화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.83, 260-270, March, 2020
Effects of Zr doping to improve ionic conductivity and lithium-diffusion kinetics of β-LiVOPO4 cathode material
E-mail:
We tried to improve the ionic conductivity, lithium-ion diffusion, and cycle capacity of pure β-LiVOPO4 cathode material by Zr doping. Pure and Zr-doped β-LiVOPO4 cathode material was synthesized by a lowtemperature sol-gel process. The physiochemical properties of the synthesized materials were analyzed by various characterization techniques. The Zr doping of the β-LiVOPO4 was confirmed by ex situ XANES analysis. The electrochemical behavior of the synthesized material was studied by various electrochemical analyses. The lithium-diffusion coefficient values of pristine and selected Zr-doped β- LiVOPO4 cathode materials were studied and compared using SSCV, EIS, and PITT at different voltages. The calculated values of the diffusion coefficients obtained from CV and EIS are in the range of 10-14 - 10-13cm2/s. The PITT measurement gives the values of 10-12 - 10-11 cm2/s. All techniques indicated that x = 0.03 Zr-doped samples obtained the improved the lithium diffusion coefficient values.
  1. Gaubicher J, Le Mercier T, Chabre Y, Angenault J, Quarton M, J. Electrochem. Soc., 146(12), 4375 (1999)
  2. Barker J, Saidi MY, Swoyer JL, J. Electrochem. Soc., 151, 796 (2004)
  3. Ren MM, Zhou Z, Su LW, Gao XP, J. Power Sources, 189(1), 786 (2009)
  4. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G, Chem. Mater., 23, 4032 (2011)
  5. Clark JM, Nishimura S, Yamada A, Islam MS, Angew. Chem.-Int. Edit., 51, 13153 (2012)
  6. Barker J, Saidi MY, Swoyer JL, J. Electrochem. Soc., 151(6), A796 (2004)
  7. Wang L, Yang LB, Gong L, Jiang XQ, Yuan K, Hu ZB, Electrochim. Acta, 56(20), 6906 (2011)
  8. Tang AP, He ZQ, Shen J, Xu GR, Adv. Mater. Res., 554, 436 (2012)
  9. Ren MM, Zhou Z, Gao XP, J. Appl. Electrochem., 40(1), 209 (2010)
  10. Malik R, Burch D, Bazant M, Ceder G, Nano Lett., 10, 4123 (2010)
  11. Xiong L, Wang Y, Wu Y, Liu W, He Z, Ionics, 9, 2471 (2015)
  12. Zhang SM, Zhang JX, Xu SJ, Yuan XJ, He BC, Electrochim. Acta, 88, 287 (2013)
  13. Wang C, Higgins D, Wang F, Li D, Liu R, Xia G, Li N, Li Q, Xu H, Wu G, Nano Energy, 9, 334 (2014)
  14. Meethong N, Kao YH, Carter WC, Chiang YM, Chem. Mater., 22, 1088 (2010)
  15. Xia H, Lu L, Ceder G, J. Power Sources, 159(2), 1422 (2006)
  16. Ivanishchev AV, Ushakov AV, Ivanishcheva IA, Churikov AV, Mironov AV, Fedotov SS, Khasanova NR, Antipov EV, Electrochim. Acta, 230, 479 (2017)
  17. Ivanishchev AV, Churikov AV, Ivanishcheva IA, Ushakov AV, Ionics, 22, 483 (2016)
  18. Santos-Mendoza IO, Vazquez-Arenas J, Gonzalez I, Ramos-Sanchez G, Castillo-Araiza CO, Int. J. Chem. Reactor Eng., 17, 201800 (2018)
  19. Chandra M, Khan TS, Shukla R, Ahmed S, Gupta A, Basu S, Ali Haider M, Dhaka RS, Electrochim. Acta, 135293 (2019).