화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.59, 30935-30948, 2019
Two-dimensional carbon nitride-based composites for photocatalytic hydrogen evolution
Photocatalytic hydrogen evolution plays a critical role in the exploration of the clean and sustainable energy. Owing to its special structure and features, two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted tremendous attention. However, some deficiencies of pristine g-C(3)N(4 )inhibit its photocatalytic application, particularly the low quantum efficiency of hydrogen evolution. Therefore, it is valuable to develop 2D new composites based on g-C3N4 so that the synergistic effects of the two original materials can be achieved. This article attempts to summarize the modification strategies of 2D g-C3N4-based composites, including the construction of heterojunctions, morphology control, doping method, surface modification and co-catalyst loading. The application and progress in photocatalytic hydrogen evolution are also highlighted. The limitations are taken into account to provide further information for the improvement in the quantum efficiency of hydrogen by 2D g-C3N4-based composites. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.