화학공학소재연구정보센터
Bioresource Technology, Vol.299, 2020
Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin
The production of phenolics by oxidative depolymerization of prot lignin and alkali lignin were studied in the presence of cobalt impregnated TiO2, CeO2 and ZrO2 catalysts at 140 degrees C for 1 h. Maximum bio-oil yield of 78.0 and 60.2 wt% were observed with Co/CeO2 catalyst for prot lignin and alkali lignin, respectively. The characterizations of the bio-oils were carried out using GC-MS, FTIR, and H-1 NMR. The GC-MS compounds have been classified into four categories (G, H, S-type and others). The depolymerization of prot lignin showed a mixture of G, H and S type phenolic monomers. Interestingly, higher selectivity of acetosyringone (47.1%) was obtained in the presence of Co/TiO2 catalyst with prot lignin. The depolymerization of alkali lignin exhibited only G-type phenolic monomers production, and was effectively produced 67.4% (G-type monomer) in the presence of Co/ZrO2 catalyst.