화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.517, No.3, 470-476, 2019
HIF-1 alpha/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification
Osteogenic differentiation of VSMC is one of the main causes of diabetic vascular calcification, and AGEs accumulation accelerates the calcification of VSMCs in diabetic patients. Autophagy has also been found to play an important role in the process of vascular calcification. However, the potential link between AGEs, autophagy and vascular calcification is still unclear and was investigated in this study. Primary VSMCs were isolated from the thoracic aorta of Sprague Dawley rats and cultured with AGEs-BSA to induce osteogenic differentiation. VSMCs calcification was evaluated by measuring the calcium content, RUNX2 protein levels, and by Alizarin red S staining. We demonstrated that treatment of VSMCs with AGE-BSA increased the expression of HIF-1 alpha and PDK4. AGE-BSA treatment increased LC3-II and decreased p62 protein levels. AGE-BSA exposure enhanced autophagic flux determined by mRFP-GFP-LC3 adenovirus, induced co-localization of LC3-II and LAMP-1, and increased the number of autophagasome under TEM. HIF-1 alpha/PDK4 pathway was activated during AGEs-induced autophagy of VSMCs. In addition, autophagy played a protective role during AGE-induced calcification of VSMCs. In conclusion, AGEs enhance autophagy via the HIF-1 alpha/PDK4 signaling pathway, and autophagy helps attenuate AGE-induced calcification of VSMCs. (C) 2019 Elsevier Inc. All rights reserved.