화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.519, No.3, 559-565, 2019
T cell receptor signaling results in ERK-dependent Ser163 phosphorylation of lymphocyte phosphatase-associated phosphoprotein
Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a transmembrane protein tightly associated with the phosphatase CD45, which regulates antigen specific lymphocyte activation. Although LPAP is positioned in close proximity to key signaling molecules, its function remains unknown. In this study, we investigated signaling pathways involved in LPAP phosphorylation. Using phosphospecific antibodies generated in our laboratory, we analyzed changes in LPAP phosphorylation in response to various stimuli. Cross-linking with antibodies against TCR or BCR, as well as ionophores and Thapsigargin, resulted in rapid dephosphorylation at Ser172 and Ser99 followed by phosphorylation at Ser163. A panel of inhibitors allowed us to show that PMA and TCR cross-linkage engages the MEK-ERK pathway to drive phosphorylation of LPAP at Ser163. The ERK1/2 kinase was the most distal element in the cascade, which when inhibited prevented changes in LPAP phosphorylation. Supporting this, we found that ERK1 is capable of phosphorylating LPAP at Ser163 in vitro. Although the functional role of this event is yet to be revealed, we provide evidence for a new ERK1/2 target in lymphocytes, namely LPAP, representing a potential regulatory mechanism in the signaling cascade. (C) 2019 Elsevier Inc. All rights reserved.