화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.1, 13-20, January, 2020
키틴과 셀룰로오스 나노파이버의 제조 및 특성과 고분자 필름에의 응용
Preparation and Properties of Chitin and Cellulose Nanofibers and Their Applications in Polymer Films
E-mail:
초록
화학적 전처리와 초미세분쇄기 및 고압균질화기와 같은 기계적 처리를 이용한 피브릴화를 통해서 셀룰로오스 나노섬유(CNF)와 키틴 나노섬유를 제조하였다. 셀룰로오스와 키틴 모두 TEMPO에 의한 산화처리에 의해서 피브릴화가 촉진되었다. 제조된 나노섬유들을 함유하는 히드록시프로필 셀룰로오스(HPC) 수용액과 알긴산 나트륨(SA) 수용액으로부터 HPC 필름과 SA 필름을 각각 제조하였으며, 나노섬유 첨가량 변화가 각 필름의 인장 특성에 미치는 효과를 평가하였다. HPC 복합필름 및 SA 복합필름의 인장강도는 각각 소량의 CNF 및 키틴 나노섬유 첨가만으로도 크게 증가하였다. 강도 보강효과는 CNF가 키틴 나노섬유보다 컸으며, 필름의 광학적 투과도는 나노섬유 첨가량 증가에 비례하여 모두 감소하였으나 키틴 나노섬유에 비하여 CNF의 감소효과가 훨씬 작았다
Cellulose nanofiber (CNF) and chitin nanofiber were prepared by using chemical pretreatments and mechanical treatments such as ultrafine grinder and high-pressure homogenizer. The fibrillation was promoted by the 2,2,6,6-tetramethylpiperidin-1-oxyl radical (TEMPO) oxidation of cellulose and chitin, respectively. Hydroxypropyl cellulose (HPC) film and sodium alginate (SA) film including these nanofibers were cast using water as a solvent. The reinforcing effect of these nanofibers on the tensile properties of HPC film and SA film was investigated by changing the add-on amount of each nanofiber. The tensile strength of the HPC composite film and SA composite film increased remarkably by adding a small amount of CNF and chitin nanofiber, respectively. The film reinforcing effect of CNF was much higher than that of chitin nanofiber. The optical transparency of both films decreased with increasing content of nanofibers. The decreasing effect of CNF on the transparency of the film was much lower than that of chitin nanofiber
  1. Uetani K, Yano H, Biomacromolecules, 12(2), 348 (2011)
  2. Isogai A, Kato Y, Cellulose, 5, 153 (1998)
  3. Lu Y, Sun Q, She X, Xia Y, Liu Y, Li J, Yang D, Carbohydr. Polym., 98, 1497 (2013)
  4. Ifuku S, Saimoto H, Nanoscale, 4, 3308 (2012)
  5. Kwak HW, Heo JE, Her KG, Lee HH, Jin HJ, Shim BS, Polym. Korea, 43(1), 32 (2019)
  6. Saito T, Kimura S, Nishiyama Y, Isogai A, Biomacromolecules, 8(8), 2485 (2007)
  7. Sim K, Youn HJ, Jo Y, J. Korea TAPPI, 72, 42 (2015)
  8. Qi ZD, Fan Y, Saito T, Fukuzumi H, Tsutsumi Y, Isogai A, RSC Adv., 3, 2613 (2013)
  9. Ambjornsson HA, Schenzel K, Germgaard U, Bioresources, 8, 1918 (2013)
  10. Hassan ML, Kassem NF, Sakhawy ME, Egypt. J. Chem., 58, 299 (2015)
  11. Onyianta AJ, Dorris M, Williams RL, Cellulose, 25, 1047 (2018)
  12. Lee SY, Chun SJ, Kang IA, Park JY, J. Ind. Eng. Chem., 15(1), 50 (2009)
  13. Borges JP, Godinho MH, Martins AF, Stamatialis DF, De Pinho MN, Belgacem MN, Polym. Compos., 25, 102 (2004)
  14. Pereira R, Carvalho a, Vaz DC, Gil MH, Mendes A, Bartolo P, Int. J. Biolog. Macromol., 52, 221 (2013)
  15. Sirvio jA, Kolehmainen A, Liimatainen H, Niinimaki J, Hormi OEO, Food Chem., 151, 343 (2014)
  16. Shen XJ, Huang PL, Chen JH Wu YY, Liu QY, Sun RC, Bioresources, 12, 8180 (2017)
  17. Deepa B, Abraham E, Pothan LA, Cordeiro N, Faria M, Thomas S, Materials, 9, 50 (2016)
  18. Sun X, Zhu J, Gu Q, You Y, Colloids Surf. A: Physicochem. Eng. Asp., 555, 103 (2018)
  19. Fan Y, Saito T, Isogai A, Carbohydr. Polym., 77, 832 (2009)
  20. Fajardo AR, Silva MB, Lopes LC, Piai JF, Rubira AF, Muniz EC, RSC Adv., 2, 11095 (2012)