화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 317-322, January, 2020
Energy storage and generation through desalination using flow-electrodes capacitive deionization
E-mail:,
Flow electrodes-based capacitive deionization (FCDI) is a highly energy-efficient desalination process compared to conventional processes, including reverse osmosis and multi-stage flash distillation. Furthermore, it provides a continuous desalination flow with high salt-removal capacity, whereas CDI using fixed electrodes requires additional electrode rinsing. In FCDI, salt ions are adsorbed onto flow carbon electrodes and stored in the electrode slurry container, which is similar to an electrochemical flow capacitor. Therefore, stored ions can generate energy during discharging in FCDI operation. In this study, such energy generation was systematically investigated in terms of the various discharging rates, feed concentrations, and volume of flow-electrode slurry. We found that the results were correlated with the changes in the salt concentration of the effluent flow. The discharging current of 50 mA showed the highest capacity for energy generation out of all the experimental conditions; it recovered around 25% of the energy consumed during FCDI desalination. We believe that such energy recovery can greatly reduce the energy consumption needed for FCDI desalination. Such recycling of generated energy would make FCDI more attractive than other conventional desalination techniques.
  1. Elimelech M, Phillip WA, Science, 333(6043), 712 (2011)
  2. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296 (2015)
  3. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  4. Lee J, Kim S, Kim C, Yoon J, Energy Environ. Sci., 7, 3683 (2014)
  5. Zhao R, Biesheuvel PM, van der Wal A, Energy Environ. Sci., 5, 9520 (2012)
  6. Hand S, Shang X, Guest JS, Smith KC, Cusick RD, Environ. Sci. Technol., 53, 3748 (2019)
  7. Dykstra JE, Porada S, van der Wal A, Biesheuvel PM, Water Res., 143, 367 (2018)
  8. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel P,, Prog. Mater Sci., 58, 1388 (2013)
  9. Lee KS, Cho Y, Choo KY, Yang S, Han MH, Kim DK, Appl. Surf. Sci., 433, 437 (2018)
  10. Zhang C, He D, Ma J, Tang W, Waite TD, Water Res., 128, 314 (2018)
  11. Liang P, Sun XL, Bian YH, Zhang HL, Yang XF, Jiang Y, Liu PP, Huang X, Desalination, 420, 63 (2017)
  12. Gao X, Porada S, Omosebi A, Liu KL, Biesheuvel PM, Landon J, Water Res., 92, 275 (2016)
  13. Santangelo S, Panto F, Triolo C, Stelitano S, Frontera P, Fernandez-Carretero F, Rincon I, Azpiroz P, Garcia-Luis A, Belaustegui Y, Electrochim. Acta, 309, 125 (2019)
  14. Wang K, Liu Y, Ding Z, Li Y, Lu T, Pan L, J. Mater. Chem. A, 7, 12126 (2019)
  15. Yasin AS, Mohamed AY, Mohamed IMA, Cho DY, Park CH, Kim CS, Chem. Eng. J., 371, 166 (2019)
  16. Ramachandran A, Oyarzun DI, Hawks SA, Stadermann M, Santiago JG, Water Res., 155, 76 (2019)
  17. Yu J, Jo K, Kim T, Lee J, Yoon J, Desalination, 439, 188 (2018)
  18. Cho Y, Yoo CY, Lee SW, Yoon H, Lee KS, Yang S, Kim DK, Water Res., 151, 252 (2019)
  19. Cho Y, Lee KS, Yang S, Choi J, Park HR, Kim DK, Energy Environ. Sci., 10, 1746 (2017)
  20. Jeon SI, Park HR, Yeo JG, Yang S, Cho CH, Han MH, Kim DK, Energy Environ. Sci., 6, 1471 (2013)
  21. Ma J, He C, He D, Zhang C, Waite TD, Water Res., 144, 296 (2018)
  22. Nativ P, Badash Y, Gendel Y, Electrochem. Commun., 76, 24 (2017)
  23. Jeon SI, Yeo JG, Yang S, Choi J, Kim DK, J. Mater. Chem. A, 2, 6378 (2014)
  24. Yang S, Choi J, Yeo JG, Jeon SI, Park HR, Kim DK, Environ. Sci. Technol., 50, 5892 (2016)
  25. Zhang CY, He D, Ma JX, Tang WW, Waite TD, Electrochim. Acta, 299, 727 (2019)
  26. Boota M, Hatzell KB, Kumbur EC, Gogotsi Y, ChemSusChem, 8, 835 (2015)
  27. Hatzell KB, Hatzell MC, Cook KM, Boota M, Housel GM, McBride M, Kumbur EC, Gogotsi Y, Environ. Sci. Technol., 49, 3040 (2015)
  28. Boota M, Hatzell KB, Alhabeb M, Kumbur EC, Gogotsi Y, Carbon, 92, 142 (2015)
  29. Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y, ACS Appl. Mater. Interfaces, 6, 8886 (2014)
  30. Yoon H, Kim HJ, Yoo JJ, Yoo CY, Park JH, Lee YA, Cho WK, Han YK, Kim DH, J. Mater. Chem. A, 3, 23323 (2015)
  31. Rommerskirchen A, Linnartz CJ, Muller D, Willenberg LK, Wessling M, ACS Sustain. Chem. Eng., 6, 13007 (2018)
  32. Ma JJ, Liang P, Sun XL, Zhang HL, Bian YH, Yang F, Bai JF, Gong QM, Huang X, J. Power Sources, 421, 50 (2019)
  33. Hatzell KB, Beidaghi M, Campos JW, Dennison CR, Kumbur EC, Gogotsi Y, Electrochim. Acta, 111, 888 (2013)
  34. Ha Y, Jung HB, Lim H, Jo PS, Yoon H, Yoo CY, Pham TK, Ahn W, Cho Y, Energies, 12, 2913 (2019)