화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 108-114, January, 2020
Improvement of power generation of enzyme fuel cell by novel GO/Co/chitosan electrodeposition
E-mail:,
An enzyme fuel cell (EFC) using composite graphite oxide/cobalt/chitosan (GO/Co/chitosan) mediator is prepared to convert chemical energy into electrical energy. The degree of chitosan deacetylation affects physicochemical and electrochemical properties of the EFC. The soluble molecular weight of chitosan polymer influences the viscosity of chitosan solution. Also, the solubility of chitosan influences the electrochemical properties of the EFC assembled by electrodeposition of GO/Co/chitosan mediator particles on electrodes. EFC performance could be improved by addition of acetic acid during deacetylation. Acetic acid (5% (v/v)) showed an efficient electron transfer between the mediator and electrolyte in the EFC. The EFC produced a potential voltage of -0.548 V vs. Ag/AgCl with power density of 1198.09 μW/cm2. The power generation was the highest at slightly acidic condition and without addition of cofactor. This study shows the efficient participation of chitosan on electron transfer in EFC application.
  1. Hong SG, Kim JH, Kim RE, Kwon SJ, Kim DW, Jung HT, Dordick JS, Kim J, Biotechnol. Bioprocess Eng., 21, 573 (2016)
  2. Xu Q, Zhang F, Xu L, Leung P, Yang C, Li H, Renew. Sust. Energ. Rev., 67, 574 (2017)
  3. Kuretake T, Kawahara S, Motooka M, Uno S, Sensors, 17, 281 (2017)
  4. Jayaraman T, Murthy AP, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Senthil RA, Shanker R, Raghavender M, Kuppusami P, Jagannathan M, Ashokkumar M, J. Ind. Eng. Chem., 64, 16 (2018)
  5. Nguyen NH, Kim JR, Park S, Biotechnol. Bioprocess Eng., 23, 564 (2018)
  6. Moumene M, Rochefort D, Mohamedi M, Int. J. Electrochem. Sci., 8, 2009 (2013)
  7. Junoh H, Jaafar J, Norddin MNAM, Ismail AF, Othman MHD, Rahman MA, Yusof N, Salleh WNW, Ilbeygi H, J. Nanomater., 690965, 1 (2015)
  8. Ma J, Sahai Y, Carbohydr. Polym., 92, 955 (2013)
  9. Zargar V, Asghari M, Dashti A, Chem. Eng. Technol., 2(3), 204 (2015)
  10. Sun J, Yang L, Jiang M, Shi Y, Xu B, Ma HL, J. Chromatogr. B, 1054, 57 (2017)
  11. Drosou C, Krokida M, Biliaderis CG, Food Hydrocolloids, 77, 726 (2018)
  12. Ardeshiri F, Akbari A, Peyravi M, Jahanshahi M, Korean J. Chem. Eng., 36(2), 255 (2019)
  13. Iqbal S, Ahmad S, J. Ind. Eng. Chem., 60, 53 (2018)
  14. An JC, Lee EJ, Hong I, J. Ind. Eng. Chem., 47, 56 (2017)
  15. Santos CMM, Garcia MBQ, Silva AMS, Santus R, Morliere P, Fernandes E, Tetrahedron Lett., 54, 85 (2013)
  16. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev Z, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
  17. Wang X, Liu WS, Lu X, Lee PS, J. Mater. Chem., 22, 23114 (2012)
  18. Yu WC, Zhan SH, Shen ZQ, Zhou QX, Chem. Eng. J., 345, 462 (2018)
  19. Lee HU, Yoo HY, Lkhagvasuren T, Song YS, Park C, Kim J, Kim SW, Biosens. Bioelectron., 42, 342 (2013)
  20. Mabayoje O, Seredych M, Bandosz TJ, J. Colloid Interface Sci., 378, 1 (2012)
  21. Younes I, Rinaudo M, Mar. Drugs, 13, 1133 (2015)
  22. Camara CI, Quiroga MVC, Wilke N, Jimenez-Kairuz A, Yudi LM, Electrochim. Acta, 94, 124 (2013)
  23. Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL, Engineering and Technology, InTech, Europe, pp.43-63 2012.
  24. Magerusan L, Pogacean F, Coros M, Socaci C, Pruneanu S, Leostean C, Pana IO, Electrochim. Acta, 283, 578 (2018)
  25. Kim DS, Kim SB, Yang X, Lee JH, Yoo HY, Chun Y, Cho J, Park C, Lee J, Kim SW, J. Electrochem. Soc., 162, H113 (2015)
  26. Chung M, Nguyen TL, Tran TQN, Yoon HH, Kim IT, Kim MI, Appl. Surf. Sci., 429, 203 (2018)
  27. Kang Z, Jiao K, Cheng J, Peng R, Jiao S, Hu Z, Biosens. Bioelectron., 101, 60 (2018)
  28. Duong NB, Wang CL, Huang LZ, Fang WT, Yang H, J. Power Sources, 429, 111 (2019)
  29. Putzbach W, Ronkainen NJ, Sensors, 13, 4811 (2013)
  30. Cannes C, Kanoufi F, Bard AJ, J. Electroanal. Chem., 574, 83 (2003)