화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.81, 99-107, January, 2020
Superparamagnetic NiO-doped mesoporous silica flower-like microspheres with high nickel content
E-mail:,
Morphology oriented synthesis of metal oxide doped silica structures have fascinating properties which needed to be explored extensively. In this work, NiO doped silica microsphere with beautiful flower-like morphology has been achieved by adopting a facile surfactant-assisted synthetic route using CTAB- ammonia in H2O.ethanol mixed solvent media. The sol.gel synthesis with effective variations of Ni/Si ratios up to 7.0, followed by a simple hydrothermal treatment and subsequent calcination leads to the formation of NiO.silica mesostructures with high nickel content. Detailed structural and elemental characterizations by using powder X-ray analysis (XRD), scanning electron (SEM) and transmission electron microscopy (TEM), N2 adsorption.desorption, X-ray photoelectron spectroscopy (XPS) revealed that single cubic phase NiO doped mesoporous silica microspheres (for Ni/Si = 5:1 and 7:1) with good surface area (169 and 205 m2 g-1 for sample with Ni/Si = 7:1 and 5:1, respectively) and pore width 3.5 nm, have been formed with 3D flower- like shape and 500-600 nm particle size. These NiO.silica microspheres containing high Ni content up to 76 wt% have shown excellent paramagnetic properties at room temperature.
  1. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y, ACS Appl. Mater. Interfaces, 6(16), 13648 (2014)
  2. Pal N, Cho EB, Kim D, Gunathilake C, Jaroniec M, Chem. Eng. J., 262, 1116 (2015)
  3. Pal N, Kim T, Park JS, Cho EB, RSC Adv., 8, 35294 (2018)
  4. Barik R, Jena BK, Mohapatra M, RSC Adv., 7, 49083 (2017)
  5. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T, Angew. Chem.-Int. Edit., 120, 8566 (2008)
  6. Pal N, Cho EB, Patra AK, Kim D, ChemCatChem, 8, 285 (2016)
  7. Li B, Zeng HC, ACS Appl. Mater. Interfaces, 10(35), 29435 (2018)
  8. Chen XF, Huang Y, Zhang KC, J. Colloid Interface Sci., 513, 788 (2018)
  9. Cai W, Ye L, Zhang L, Ren Y, Yue B, Chen X, He H, Materials, 7, 2340 (2014)
  10. Lee J, Lee SY, Park SH, Lee HS, Lee JH, Jeong BY, Park SE, Chang JH, J. Mater. Chem. B, 1, 610 (2013)
  11. Yang M, Wu H, Wu H, Huang C, Weng W, Chen M, Wan H, RSC Adv., 6, 81237 (2016)
  12. Wang Y, Li Q, Wang C, Guo W, Wang D, Niu S, Mater. Lett., 180, 35 (2016)
  13. Guo Z, Du F, Li G, Cui Z, Chem. Commun., 2911 (2008).
  14. Pal N, Banerjee S, Choi E, Cho EB, ChemistrySelect, 3, 6029 (2018)
  15. Yang Y, Jin R, Song S, Xing Y, Mater. Lett., 93, 5 (2013)
  16. Park JC, Lee HJ, Bang JU, Park KH, Song H, Chem. Commun., 7345 (2009).
  17. Rong Q, Long LL, Zhang X, Huang YX, Yu HQ, Appl. Energy, 153, 63 (2015)
  18. Cui Y, Wang C, Wu S, Liu G, Zhang F, Wang T, CrystEngComm, 13, 4930 (2011)
  19. Qu F, Wang Y, Liu J, Wen S, Chen Y, Ruan S, Mater. Lett., 132, 167 (2014)
  20. Xie Q, Ma Y, Zeng D, Wang L, Yue G, Peng DL, Sci. Rep., 5, 8351 (2015)
  21. Salavati-Niasari M, Seyghalkar H, Amiri O, Davar F, J. Cluster Sci., 24, 365 (2013)
  22. Pan JH, Huang Q, Koh ZY, Neo D, Wang XZ, Wang Q, ACS Appl. Mater. Interfaces, 5(13), 6292 (2013)
  23. Cho EB, Yim S, Kim D, Jaroniec M, J. Mater. Chem. A, 1, 12595 (2013)
  24. Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK, Solid State Sci., 8, 425 (2006)
  25. Ahmad T, Khatoon S, Coolahan K, Lofland SE, J. Mater. Res., 28, 1245 (2013)
  26. Ahmad T, Khatoon S, Coolahan K, J. Am. Ceram. Soc., 99(4), 1207 (2016)
  27. Jaroniec M, Solovyov LA, Langmuir, 22(16), 6757 (2006)
  28. Danks AE, Hall SR, Schnepp Z, Mater. Horiz., 3, 91 (2016)
  29. Pal N, Banerjee S, Bhaumik A, J. Colloid Interface Sci., 516, 121 (2018)
  30. Wang SJ, Ong CK, Appl. Phys. Lett., 80, 2541 (2002)
  31. Guittet MJ, Crocombette JP, Gautier-Soyer M, Phys. Rev. B, 63(1-7), 125117 (2001)
  32. Weidler N, Schuch J, Knaus F, Stenner P, Hoch S, Maljusch A, Schafer R, Kaiser B, Jaegermann W, J. Phys. Chem. C, 121, 6455 (2017)
  33. Pal N, Cho EB, Kim D, Jaroniec M, J. Phys. Chem. C, 118, 15892 (2014)
  34. Bindu P, Thomas S, J. Theor. Appl. Phys., 8, 123 (2014)
  35. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891 (2004)
  36. Ge MY, Han LY, Wiedwald U, Xu XB, Wang C, Kuepper K, Ziemann P, Jiang JZ, Nanotechnology, 21, 425702 (2010)
  37. Winkler E, Zysler RD, Mansilla MV, Fiorani D, Rinaldi D, Vasilakaki M, Trohidou KN, Nanotechnology, 19, 185702 (2008)
  38. Rakshit S, Ghosh S, Chall S, Mati SS, Moulika SP, Bhattacharya SC, RSC Adv., 3, 19348 (2013)
  39. Motahari F, Mozdianfard MR, Soofivand F, Salavati-Niasari M, RSC Adv., 4, 27654 (2014)