화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.12, 1971-1982, December, 2019
Oxygen transfer capacity of the copper component introduced into the defected-MgMnAlO4 spinel structure in CH4-CO2/air redox cycles
E-mail:,
Oxygen carrier particles were fabricated by using defected-MgMnAlO4 as a support particle with crystal defects, and by the Cu2+ ions with a higher reduction potential substituted with Mg2+ ions, in order to use methanechemical looping combustion (CH4-CLC) reaction. The oxygen transfer capacities of the particles were compared when conducting redox reactions under H2/air or CH4-CO2/air systems. As a result, the oxygen transfer capacity increased as the amount of Cu ions added increased. In particular, in the CH4-CO2/air system, Cu0.75Mg0.25MnAlO4 particle showed an excellent oxygen transfer capacity of 7.62%. The XPS result confirms that the Cu2+ (also partially Mn3+ ions) in the Cu0.75Mg0.25MnAlO4 particle oxidize CH4, and then they are restored to their original state by receiving oxygen from the Al3+ and Mg2+ ions in the support. The oxygen vacancies in the lattice due to the Cu2+ could easily induce oxygen delivery, and the reversible oxygen loss recovery by re-oxidation in the air reactor could be achieved. This is the most important factor in increasing oxygen transfer capacity. Ultimately, in this study, oxygen defects in the crystal lattices induced during the reaction seem to have a positive effect on the CH4 combustion reaction.
  1. Sun S, Wang L, Liu X, Jin B, Wang D, Processes, 6, 1 (2018)
  2. Cheng XM, Li KZ, Wang H, Zhu X, Wei YG, Li ZH, Zheng M, Tian D, Chem. Eng. J., 328, 382 (2017)
  3. Marx K, Bertsch O, Proll T, Hofbauer H, Energy Procedia, 37, 635 (2013)
  4. Villa R, Cristiani C, Groppi G, Lietti L, Forzatti P, Cornaro U, Rossini S, J. Mol. Catal. A-Chem., 204, 637 (2003)
  5. Hossain MM, de Lasa HI, AIChE J., 53(7), 1817 (2007)
  6. Kang S, Im Y, Park KS, Cho TW, Jeon J, Chung KI, Kang M, Electrochim. Acta, 209, 623 (2016)
  7. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang M, Korean J. Chem. Eng., 37, 1936 (2017)
  8. Kwak BS, Park NK, Ryu HJ, Baek JI, Kang M, Appl. Therm. Eng., 128, 1273 (2018)
  9. Linderholm C, Abad A, Mattisson T, Lyngfelt A, Int. J. Greenh. Gas Con., 2, 520 (2008)
  10. Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G, ACS Catal., 7, 6493 (2017)
  11. Kwak BS, Park NK, Ryu SO, Baek JI, Ryu HJ, Kang M, Chem. Eng. J., 309, 617 (2017)
  12. Son N, Do JY, Park NK, Ryu SO, Kwak BS, Baek JI, Kim US, Ryu HJ, Lee D, Kang M, Int. J. Energy Res., 42(12), 3943 (2018)
  13. Do JY, Lee JH, Park NK, Lee TJ, Lee ST, Kang M, Chem. Eng. J., 334, 1668 (2018)
  14. Do JY, Son N, Park NK, Kwak BS, Baek JI, Ryu HJ, Kang M, Appl. Energy, 219, 138 (2018)
  15. Ryu HJ, Lee SY, Park YC, Park MH, World Acad. Sci. Eng. Technol., 28, 169 (2007)
  16. Zhu Y, Liu X, Jin S, Chen H, Lee W, Liu M, Chen Y, J. Mater. Chem. A., 7, 5875 (2019)
  17. Singh K, Razmiooei F, Yu JS, J. Mater. Chem. A, 5, 20095 (2017)
  18. Gribchenkova NA, Snorchkov KG, Kolmakov AG, Alikhanyan AS, Inorg. Mater., 54, 575 (2018)
  19. Soomro KR, Ibupoto ZH, Sirajuddin B, Int. J. Food Prop., 20, 1359 (2017)
  20. Schreyeck L, Wlosik A, Fuzellier H, J. Mater. Chem., 11, 483 (2001)
  21. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Chem. Eng. Sci., 60(3), 851 (2005)
  22. Kogler M, Kock EM, Bielz T, Pfaller K, Klotzer B, Schmidmair D, Perfler L, Penner S, J. Phys. Chem. C., 118, 8435 (2014)
  23. Sihaib Z, Puleo F, Pantaleo G, Parola VL, Valverde JL, Gil S, Liotta LF, Giroir-Fendler A, Catalysts, 9, 226 (2019)
  24. Qiu L, Wang Y, Pang D, Ouyang F, Zhang C, Cao G, Catalysts, 6, 9 (2016)
  25. Huo C, Ouyang J, Yang H, Sci. Rep., 4, 3682 (2014)
  26. Qin W, Lin C, Wang J, Xiao X, Dong C, Wei L, Energies, 9, 1 (2016)
  27. Kim KM, Kwak BS, Park NK, Lee TJ, Lee ST, Kang M, J. Ind. Eng. Chem., 46, 324 (2017)
  28. Qian I, Yan Z, J. Nat. Gas Chem., 11, 151 (2002)
  29. Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z, Catal. Sci. Technol., 5, 3166 (2015)
  30. Scheffe JR, McDaniel AH, Allendorf MD, Weimer AW, Energy Environ. Sci., 6, 963 (2013)
  31. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371 (2004)
  32. Cho P, Mattisson T, Lyngfelt A, Fuel, 83(9), 1215 (2004)
  33. Wang JG, Zhang C, Jin D, Xie K, Wei B, J. Mater. Chem. A, 3, 13699 (2015)
  34. Zhou PH, Deng LJ, Xie JL, Liang DF, Chen L, Zhao XQ, J. Magn. Magn. Mater., 292, 325 (2005)
  35. Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P, Chem. Eng. Sci., 60(3), 851 (2005)
  36. Poulston S, Parlett PM, Stone P, Bowker M, Surf. Interface Anal., 24, 811 (1996)
  37. Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalez-Elipe AR, J. Phys. Chem. B., 106, 6921 (2002)
  38. Zhang JY, Wu ZL, Wang SG, Zhao CJ, Yang G, Appl. Phys. Lett., 102, 102404 (2013)
  39. Luo Y, Wang X, Guo W, Rohwerder M, J. Electrochem. Soc., 162, 294 (2015)
  40. Li XJ, Xin MY, Guo S, Cai TH, Du DF, Xing W, Zhao LM, Guo WY, Xue QZ, Yan ZF, Electrochim. Acta, 253, 302 (2017)
  41. Ksepko E, Babinski P, Nalbandian L, Appl. Energy, 190, 1258 (2017)
  42. Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y, Sci. Rep., 3, 1021 (2013)