화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.4, 255-266, November, 2019
Uniaxial extensional viscosity of semidilute DNA solutions
E-mail:
The extensional rheology of polymer melts and dilute polymer solutions has been extensively examined through experiments and theoretical predictions. However, a systematic study of the extensional rheology of polymer solutions in the semidilute regime, in terms of examining the effects of concentration and molecular weight, has not been carried out so far. Previous experimental studies of the shear rheology of semidilute polymer solutions have demonstrated that their behaviour is distinctively different from that observed in the dilute and concentrated regimes. This difference in behaviour is anticipated to be even more pronounced in extensional flows, which play a critical role in a number of industrial contexts such as fiber spinning and ink-jet printing. In this work, the extensional rheology of linear, double-stranded DNA molecules, spanning an order of magnitude of molecular weights (25-289 kilobasepairs) and concentrations (0.03-0.3 mg/ml), has been investigated. DNA solutions are now used routinely as model polymeric systems due to their near-perfect monodispersity. Measurements have been carried out with a filament stretching rheometer since it is the most reliable method for obtaining an estimate of the elongational stress growth of a polymer solution. Transient and steady-state uniaxial extensional viscosities of DNA dissolved in a solvent under excess salt conditions, with a high concentration of sucrose in order to achieve a sufficiently high solvent viscosity, have been determined in the semidilute regime at room temperature. The dependence of the steady state uniaxial extensional viscosity on molecular weight, concentration and extension rate is measured with a view to determining if data collapse can be observed with an appropriate choice of variables. Steady state shear viscosity measurements suggest that sucrose-DNA interactions might play a role in determining the observed rheological behaviour of semidilute DNA solutions with sucrose as a component in the solvent.
  1. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF, J. Rheol., 45(1), 83 (2001)
  2. Bach A, Rasmussen HK, Hassager O, J. Rheol., 47(2), 429 (2003)
  3. Bhattacharjee PK, Nguyen DA, McKinley GH, Sridhar T, J. Rheol., 47(1), 269 (2003)
  4. Brockman C, Kim SJ, Schroeder CM, Soft Matter, 7, 8005 (2011)
  5. Christanti Y, Walker LM, J. Non-Newton. Fluid Mech., 100(1-3), 9 (2001)
  6. Clasen C, Korea-Aust. Rheol. J., 22(4), 331 (2010)
  7. Dinic J, Jimenez LN, Sharma V, Lab Chip, 17, 460 (2017)
  8. Dinic J, Biagioli M, Sharma V, J. Polym. Sci. B: Polym. Phys., 55(22), 1692 (2017)
  9. Dinic J, Sharma V, Proc. Natl. Acad. Sci. U.S.A., 116, 8766 (2019)
  10. Goudoulas TB, Pan S, Germann N, Polymer, 140, 240 (2018)
  11. Gupta RK, Nguyen DA, Sridhar T, Phys. Fluids, 12, 1296 (2000)
  12. Heo Y, Larson RG, J. Rheol., 49(5), 1117 (2005)
  13. Hsiao KW, Sasmal C, Prakash JR, Schroeder CM, J. Rheol., 61(1), 151 (2017)
  14. Huang CC, Winkler RG, Sutmann G, Gompper G, Macromolecules, 43(23), 10107 (2010)
  15. Hur JS, Shaqfeh ESG, Babcock HP, Smith DE, Chu S, J. Rheol., 45(2), 421 (2001)
  16. Laib S, Robertson RM, Smith DE, Macromolecules, 39(12), 4115 (2006)
  17. Larson RG, Desai PS, Annu. Rev. Fluid Mech., 47, 47 (2015)
  18. McKinley GH, Hassager O, J. Rheol., 43(5), 1195 (1999)
  19. McKinley GH, Sridhar T, Annu. Rev. Fluid Mech., 34, 375 (2002)
  20. Nguyen DA, Bhattacharjee PK, Sridhar T, J. Rheol., 59(3), 821 (2015)
  21. Pan S, Ahirwal D, Nguyen DA, Sridhar T, Sunthar P, Prakash JR, Macromolecules, 47(21), 7548 (2014)
  22. Pan S, Nguyen DA, Dunweg B, Sunthar P, Sridhar T, Prakash JR, J. Rheol., 62(4), 845 (2018)
  23. Pan S, Nguyen DA, Sridhar T, Sunthar P, Prakash JR, J. Rheol., 58(2), 339 (2014)
  24. Pecora R, Science, 251, 893 (1991)
  25. Prakash JR, Curr. Opin. Colloid Interface Sci., 43, 63 (2019)
  26. Regan K, Ricketts S, Robertson-Anderson RM, Polymers, 8, 336 (2016)
  27. Rubinstein M, Colby RH, Polymer Physics, 2003.
  28. Sambrook J, Russell DW, Molecular Cloning: A Laboratory Manual, 2001.
  29. Sasmal C, Hsiao KW, Schroeder CM, Prakash JR, J. Rheol., 61(1), 169 (2017)
  30. Schroeder CM, J. Rheol., 62(1), 371 (2018)
  31. Shaqfeh ESG, J. Non-Newton. Fluid Mech., 130(1), 1 (2005)
  32. Sridhar T, Acharya M, Nguyen DA, Bhattacharjee PK, Macromolecules, 47, 379 (2013)
  33. Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK, J. Non-Newton. Fluid Mech., 40, 271 (1991)
  34. Stoltz C, de Pablo JJ, Graham MD, J. Rheol., 50(2), 137 (2006)
  35. Sunthar P, Nguyen DA, Dubbelboer R, Prakash JR, Sridhar T, Macromolecules, 38(24), 10200 (2005)
  36. Tajmir-Riahi HA, Naoui M, Diamantoglou S, J. Biomol. Struct. Dyn., 12, 217 (1994)
  37. Tirtaatmadja V, Sridhar T, J. Rheol., 37, 1081 (1993)
  38. Wang YY, Cheng SW, Wang SQ, J. Rheol., 55(6), 1247 (2011)
  39. Wang YY, Wang SQ, Macromolecules, 44(13), 5427 (2011)