화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.4, 241-248, November, 2019
Multi-chain slip-spring simulations for polyisoprene melts
E-mail:
The multi-chain slip-spring (MCSS) model is a coarse-grained molecular model developed for efficient simulations of the dynamics of entangled polymers. In this study, we examined the model for the viscoelasticity of polyisoprene (PI) melts, for which the data are available in the literature. We determined the conversion factor for the molecular weight from the fitting of the molecular weight dependence of zero-shear viscosity. According to the obtained value, we calculated the linear viscoelasticity of several linear PI melts to determine the units of time and modulus. Based on the conversion factors thus determined, we predicted linear viscoelasticity of 6-arm star PI melts, and viscosity growth under high shear for linear PI melts. The predictions were in good agreement with the data, demonstrating the validity of the method. The conversion factors determined were consistent with those reported for polystyrene melts earlier, whereas the relations between the conversion factors are still unknown.
  1. Abdel-Goad M, Pyckhout-Hintzen W, Kahle S, Allgaier J, Richter D, Fetters LJ, Macromolecules, 37(21), 8135 (2004)
  2. Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C, J. Rheol., 52(3), 801 (2008)
  3. Baig C, Stephanou PS, Tsolou G, Mavrantzas VG, Kroger M, Macromolecules, 43(19), 8239 (2010)
  4. Baig C, Mavrantzas VG, Kroger M, Macromolecules, 43(16), 6886 (2010)
  5. Chappa VC, Morse DC, Zippelius A, Muller M, Phys. Rev. Lett., 109, 148302 (2012)
  6. Costanzo S, Huang Q, Ianniruberto G, Marrucci G, Hassager O, Vlassopoulos D, Macromolecules, 49(10), 3925 (2016)
  7. Doi M, Edwards SF, The Theory of Polymer Dynamics, 1986.
  8. Ferry JD, Viscoelastic Properties of Polymers, 1980.
  9. Gotro JT, Graessley WW, Macromolecules, 17, 2767 (1984)
  10. Kremer K, Grest GS, J. Chem. Phys., 92, 5057 (1990)
  11. Kumar S, Larson RG, J. Chem. Phys., 114(15), 6937 (2001)
  12. Langeloth M, Masubuchi Y, Bohm MC, Muller-plathe F, J. Chem. Phys., 138, 104907 (2013)
  13. Langeloth M, Masubuchi Y, Bohm MC, Muller-Plathe F, J. Chem. Phys., 141, 194904 (2014)
  14. Likhtman AE, Macromolecules, 38(14), 6128 (2005)
  15. Likhtman AE, McLeish TCB, Macromolecules, 35(16), 6332 (2002)
  16. Masubuchi Y, Annu. Rev. Chem. Biomol. Eng., 5, 11 (2014)
  17. Masubuchi Y, J. Chem. Phys., 143, 224905 (2015)
  18. Masubuchi Y, Reference Module in Materials Science and Materials Engineering, 1-7. 2016a.
  19. Masubuchi Y, Computer Simulation of Polymeric Materials, 101-127, 2016b.
  20. Masubuchi Y, Macromolecules, 51(24), 10184 (2018)
  21. Masubuchi Y, Ianniruberto G, Greco F, Marrucci G, J. Chem. Phys., 119(13), 6925 (2003)
  22. Masubuchi Y, Ianniruberto G, Greco F, Marrucci G, Model. Simul. Mater. Sci. Eng., 12, S91 (2004)
  23. Masubuchi Y, Ianniruberto G, Marrucci G, Nihon. Reoroji. Gakk., 46, 23 (2018)
  24. Masubuchi Y, Takimoto JI, Koyama K, Ianniruberto G, Marrucci G, Greco F, J. Chem. Phys., 115(9), 4387 (2001)
  25. Masubuchi Y, Langeloth M, Bohm MC, Inoue T, Muller-Plathe F, Macromolecules, 49(23), 9186 (2016)
  26. Masubuchi Y, Uneyama T, Soft Matter, 14, 5986 (2018)
  27. Masubuchi Y, Uneyama T, ECS Trans., 88, 161 (2018)
  28. Masubuchi Y, Uneyama T, Soft Matter, 15, 5109 (2019)
  29. Matsumiya Y, Masubuchi Y, Inoue T, Urakawa O, Liu CY, van Ruymbeke E, Watanabe H, Macromolecules, 47(21), 7637 (2014)
  30. Matsushima S, Takano A, Takahashi Y, Matsushita Y, Polymer, 133, 137 (2017)
  31. Megariotis G, Vogiatzis GG, Sgouros AP, Theodorou DN, Polymers, 10, 1156 (2018)
  32. Sefiddashti NMH. Edwards BJ, Khomami B, J. Rheol., 59, 119 (2015)
  33. Padding JT, Briels WJ, J. Chem. Phys., 115(6), 2846 (2001)
  34. Pan G, Manke CW, Int. J. Mod. Phys. B, 17, 231 (2003)
  35. Ramirez-Hernandez A, Peters BL, Schneider L, Andreev M, Schieber JD, Muller M, Kroger M, de Pablo JJ, Macromolecules, 51(5), 2110 (2018)
  36. Ramirez-Hernandez A, Peters BL, Andreev M, Schieber JD, de Pablo JJ, J. Chem. Phys., 143, 243147 (2015)
  37. Ramirez-Hernandez A, Detcheverry FA, Peters BL, Chappa VC, Schweizer KS, Muller M, de Pablo JJ, Macromolecules, 46(15), 6287 (2013)
  38. Sgouros AP, Megariotis G, Theodorou DN, Macromolecules, 50(11), 4524 (2017)
  39. Stephanou PS, Baig C, Tsolou G, Mavrantzas VG, Kroger M, J. Chem. Phys., 132, 124904 (2010)
  40. Uneyama T, Nihon. Reoroji. Gakk., 39, 135 (2011)
  41. Uneyama T, Masubuchi Y, J. Chem. Phys., 137, 154902 (2012)
  42. Uneyama T, Masubuchi Y, Horio K, Matsumiya Y, Watanabe H, Pathak JA, Roland CM, J. Polym. Sci. B: Polym. Phys., 47(11), 1039 (2009)
  43. Vogiatzis GG, Megariotis G, Theodorou DN, Macromolecules, 50(7), 3004 (2017)
  44. Xu X, Chen J, An L, J. Chem. Phys., 142, 074903 (2015)