화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.6, 838-845, November, 2019
플루오르화 폴리비닐리덴 바인더의 분자량이 유기계 전기이중층 커패시터의 전기화학적 특성에 미치는 영향
Effects of Molecular Weight of Polyvinylidene Fluoride Binder on Electrochemical Performances of Organic Electric Double-Layer Capacitors
E-mail:
초록
본 논문에서는 바인더가 유기계 전기이중층 커패시터(EDLCs)의 전기화학적 성질에 미치는 영향을 조사하기 위하여 플루오르화 폴리비닐리덴(polyvinylidene fluoride, PVDF) 바인더의 분자량을 다르게 하여 EDLC를 조립한 후 다양한 전기화학적 특성 분석을 실시하였다. 특성 분석 결과, 낮은 분자량의 PVDF를 사용하여 조립된 EDLC는 높은 분자량의 PVDF를 사용하여 조립된 EDLC보다 낮은 저항 및 높은 용량 특성을 나타냈으나 충-방전이 진행되는 동안 활물질과 도전재 사이의 구조가 높은 분자량의 PVDF를 사용하여 조립된 EDLC에 비해 느슨해져 결과적으로 낮은 수명을 나타내었다. 따라서 높은 성능을 갖는 EDLC를 제조하기 위해서는 적절한 바인더 분자량이 요구 된다.
Herein, we assembled electric double-layer capacitor (EDLCs) electrodes with polyvinylidene fluoride (PVDF) as the binder. The effect of the molecular weight of PVDF on the electrochemical properties of the EDLCs were investigated by various characterization tools. The EDLCs assembled using PVDF with low molecular weight showed relatively good capacitance compared to those assembled using PVDF with high molecular weight owing to their low resistance. However, in long-term durability experiments, EDLCs assembled using PVDF with high molecular weights showed higher durability than EDLCs assembled using PVDF with low molecular weights. To investigate the underlying reasons, field emission-scanning electron microscopy (FE-SEM) was applied. Although all prepared EDLC electrodes showed tightly packed morphologies before charge.discharge process was conducted, morphologies of electrodes using low molecular weight PVDF were gradually loosed as charge.discharge process was conducted. As a result, an appropriate binder molecular weight is required to prepare EDLC with high performances.
  1. Frackowiak E, Abbas Q, Beguin F, J. Energy Chem., 22, 226 (2013)
  2. Gonzalez A, Goikolea E, Barrena JA, Mysyk R, Renew. Sust. Energ. Rev., 58, 1189 (2016)
  3. Zhang L, Hu X, Wang Z, Sun F, Dorrell DG, Renew. Sust. Energ. Rev., 81, 1868 (2018)
  4. Burt R, Birkett G, Zhao XS, Phys. Chem. Chem. Phys., 16, 6519 (2014)
  5. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
  6. Sato T, Marukane S, Morinaga T, Kamijo T, Arafune H, Tsujii Y, J. Power Sources, 295, 108 (2015)
  7. Miller JR, Simon P, Science, 321, 651 (2008)
  8. Thounthong P, Chunkag V, Sethakul P, Sikkabut S, Pierfederici S, Davat B, J. Power Sources, 196(1), 313 (2011)
  9. Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8, 702 (2015)
  10. Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
  11. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  12. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  13. Inagaki M, Konno H, Tanaike O, J. Power Sources, 195(24), 7880 (2010)
  14. Jackel N, Weingarth D, Zeiger M, Aslan M, Grobelsek I, Presser V, J. Power Sources, 272, 1122 (2014)
  15. Michael MS, Prabaharan SRS, J. Power Sources, 136(2), 250 (2004)
  16. Zhu Z, Tang S, Yuan J, Qin X, Deng Y, Qu R, Haarberg GM, Int. J. Electrochem. Sci., 11, 8270 (2016)
  17. Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Long D, Qiao W, Kumbur EC, Gogotsi Y, Carbon, 77, 155 (2014)
  18. Kim T, Yoon J, J. Electroanal. Chem., 704, 169 (2013)
  19. Shin H, Agostini M, Belharouak I, Hassoun J, Sun Y, Carbon, 96, 125 (2016)
  20. Yang I, Kwon D, Kim MS, Jung JC, Carbon, 132, 503 (2018)
  21. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH, Adv. Mater., 13(7), 497 (2001)
  22. Rangom Y, Tang X, Nazar LF, ACS Nano, 9, 7248 (2015)
  23. Frackowiak E, Metenier K, Bertagna V, Beguin F, Appl. Phys. Lett., 77, 2421 (2000)
  24. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918 (2015)
  25. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y, J. Phys. Chem. C, 113, 13103 (2009)
  26. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Nano Lett., 10, 4863 (2010)
  27. Miller JR, Outlaw RA, Holloway BC, Electrochim. Acta, 56(28), 10443 (2011)
  28. Liu Z, Liu S, Dong R, Yang S, Lu H, Narita A, Feng X, Mullen K, Small, 13, 160338 (2017)
  29. Pan H, Li J, Feng YP, Nanoscale Res. Lett., 5, 654 (2010)
  30. Li Z, Akhtar MS, Yang O, J. Alloy. Compd., 653, 212 (2015)
  31. Kim C, J. Power Sources, 142(1-2), 382 (2005)
  32. Kim SJ, Hwang SW, Hyun SH, J. Mater. Sci., 40(3), 725 (2005)
  33. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ, J. Power Sources, 158(1), 784 (2006)
  34. Halama A, Szubzda B, Pasciak G, Electrochim. Acta, 55(25), 7501 (2010)
  35. Kim CHJ, Zhao DD, Lee G, Liu J, Adv. Funct. Mater., 26(27), 4976 (2016)
  36. Lee YJ, Jung JC, Yi J, Baeck SH, Yoon JR, Song IK, Curr. Appl. Phys., 10(2), 682 (2010)
  37. Yang I, Kim SG, Kwon SH, Lee JH, Kim MS, Jung JC, Curr. Appl. Phys., 16(6), 665 (2016)
  38. Yang I, Kim SG, Kwon SH, Kim MS, Jung JC, Electrochim. Acta, 223, 21 (2017)
  39. Qu DY, Shi H, J. Power Sources, 74(1), 99 (1998)
  40. Yang I, Kwon D, Yoo J, Kim MS, Jung JC, Curr. Appl. Phys., 19(2), 89 (2019)
  41. Yoo HD, Jang JH, Ryu JH, Park Y, Oh SM, J. Power Sources, 267, 411 (2014)
  42. Portet C, Taberna PL, Simon P, Laberty-Robert C, Electrochim. Acta, 49(6), 905 (2004)
  43. Lei CH, Markoulidis F, Ashitaka Z, Lekakou C, Electrochim. Acta, 92, 183 (2013)
  44. Yang I, Kwon SH, Kim BS, Kim SG, Lee BJ, Kim MS, Jung JC, Korean J. Mater. Res., 25(3), 132 (2015)