화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.10, 1669-1679, October, 2019
An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions
E-mail:
The chemical absorption of CO2 in a monoethanolamine (MEA) solution by a ceramic hollow fiber membrane contactor (HFMC) was investigated experimentally and numerically to obtain the best compromise between the mass transfer coefficient and structural characteristics such as membrane pore size and porosity. The mathematical model derived is based on the three resistances in the resistance-in-series model. The accuracy of the numerical simulation was verified quantitatively by the experimental data obtained in this study. A good agreement between experimental and computational results was found with an average absolute deviation (AAD) between observed data and predicted values of 2.86%. In addition, the effects of the operating condition (i.e., gas and liquid flow rates) on the mass transfer coefficients for ceramic HFMC systems were also studied, revealing that the membrane and gas-phase mass transfer resistances were dominant factors in the overall mass transfer. In conclusion, the present study suggests that the membrane structure plays a very important role in the optimization of HFMC performance. In fact, the best results were obtained with an intermediate range of the pore size between 102 and 104 nm, corresponding to the best compromise between performance (i.e., overall mass transfer coefficient) and applicability (i.e., breakthrough pressure).
  1. Kim YH, Ryu JH, Lee IB, Korean Chem. Eng. Res., 47(5), 531 (2009)
  2. Bakeri G, Rezaei-DashtArzhandi M, Ismail AF, Matsuura T, Abdullah MS, Cheer NB, Korean J. Chem. Eng., 34(1), 160 (2017)
  3. Nabian N, Ghoreyshi AA, Rahimpour A, Shakeri M, Korean J. Chem. Eng., 32(11), 2204 (2015)
  4. Jeong D, Yun M, Oh J, Yum I, Lee Y, Korean J. Chem. Eng., 27(3), 939 (2010)
  5. Ozturk B, Hughes R, Chem. Eng. J., 195-196, 122 (2012)
  6. Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 401-402, 175 (2012)
  7. Hashemifard SA, Matsuura T, Ismail AF, Arzhandi MRD, Rana D, Bakeri G, Chem. Eng. J., 281, 970 (2015)
  8. Li K, Kong JF, Tan XY, Chem. Eng. Sci., 55(23), 5579 (2000)
  9. Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT, J. Membr. Sci., 285(1-2), 272 (2006)
  10. Bakeri G, Ismail AF, Rana D, Matsuura T, Chem. Eng. J., 198-199, 327 (2012)
  11. Korminouri F, Rahbari-Sisakht M, Matsuura T, Ismail AF, Chem. Eng. J., 264, 453 (2015)
  12. Wang L, Zhang ZH, Zhao B, Zhang HW, Lu XL, Yang Q, Sep. Purif. Technol., 116, 300 (2013)
  13. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
  14. Koonaphapdeelert S, Wu ZT, Li K, Chem. Eng. Sci., 64(1), 1 (2009)
  15. Lee HJ, Park JH, J. Membr. Sci., 518, 79 (2016)
  16. Yang MC, Cussler EL, AIChE J., 32, 1910 (1986)
  17. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, J. Membr. Sci., 78, 197 (1993)
  18. Versteeg GF, van Swaalj WPM, J. Chem. Eng. Data, 33, 29 (1988)
  19. Ko JJ, Tsai TC, Lin CY, Wang HM, Li MH, J. Chem. Eng. Data, 46, 160 (2000)
  20. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
  21. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109 (2005)
  22. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 380(1-2), 21 (2011)
  23. Poling BE, Prausnitz JM, O’connell JP, Properties of gases and liquids, fifth Ed., McGraw-Hill (2004).
  24. Yang MC, Cussler EL, AIChE J., 32, 1910 (1986)
  25. Costello MJ, Fane AG, Hogan PA, Schofield RW, J. Membr. Sci., 80, 1 (1993)
  26. Cote P, Bersillon JL, Huyard A, J. Membr. Sci., 47, 91 (1989)
  27. Prasad R, Sirkar KK, AIChE J., 34, 177 (1988)
  28. DeCoursey WJ, Chem. Eng. Sci., 29, 1867 (1974)
  29. Blauwhoff PMM, Versteef GF, van Swaaij WPM, Chem. Eng. Sci., 38, 1411 (1983)
  30. Snijder ED, te Riele MJM, Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 38, 475 (1993)
  31. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R, J. Membr. Sci., 347(1-2), 228 (2010)
  32. Penttila A, Dell'Era C, Uusi-Kyyny P, Alopaeus V, Fluid Phase Equilib., 311, 59 (2011)
  33. Dindore VY, Brilman DWF, Geuzebroek FH, Versteeg GF, Sep. Purif. Technol., 40(2), 133 (2004)
  34. Jayarathna SA, Weerasooriya A, Dayarathna S, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 58(4), 986 (2013)
  35. Calderer M, Jubany I, Perez R, Marti V, de Pablo J, Chem. Eng. J., 165(1), 2 (2010)
  36. Kim JH, Hong SK, Park SJ, Korean Chem. Eng. Res., 45(6), 619 (2007)
  37. Quijada-Maldonado E, Aelmans TAM, Meindersma GW, de Haan AB, Chem. Eng. J., 223, 287 (2013)
  38. Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R, Chem. Eng. Sci., 58(23-24), 5195 (2003)
  39. Rongwong W, Jiraratananon R, Archariyawut S, Sep. Purif. Technol., 69(1), 118 (2009)
  40. Kim YS, Yang SM, Sep. Purif. Technol., 21(1-2), 101 (2000)
  41. Yang J, Yu XH, Yan JY, Tu ST, Dahlquist E, Appl. Energy, 112, 755 (2013)
  42. Lv YX, Yu XH, Jia JJ, Tu ST, Yan JY, Dahlquist E, Appl. Energy, 90(1), 167 (2012)
  43. Yan SP, Fang MX, Zhang WF, Wang SY, Xu ZK, Luo ZY, Cen KF, Fuel Process. Technol., 88(5), 501 (2007)
  44. Rongwong W, Assabumrungrat S, Jiraratananon R, J. Membr. Sci., 429, 396 (2013)
  45. Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163 (2007)
  46. Faiz R, Al-Marzouqi M, J. Membr. Sci., 342(1-2), 269 (2009)
  47. DashtArzhandi MR, Ismail AF, Matsuura T, Ng BC, Abdullah MS, Chem. Eng. J., 269, 51 (2015)
  48. Rahbari-Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail AF, Chem. Eng. J., 246, 306 (2014)
  49. Hasanoglu A, Romero J, Perez B, Plaza A, Chem. Eng. J., 160(2), 530 (2010)
  50. Mansourizadeh A, Ismail AF, Chem. Eng. J., 165(3), 980 (2010)