화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 409-417, November, 2019
Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal.air batteries
E-mail:,
A composite consisting of lead ruthenate nanocrystals with an expanded pyrochlore structure on reduced graphene oxide nano-sheets, is reported as an efficient bifunctional catalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Comparative studies for ORR show that the composite produces highly positive synergic coupling effects, strengthening a four-electron catalytic route, i.e., more positive onset potential, higher limiting current density, much smaller Tafel slope, and more durable catalytic performance after thousands of voltammetric cycling than pristine material. The composite also functions as an excellent and durable OER catalyst, exceeding the performance of NiCo2O4 and RuO2.
  1. PalacIn MR, Chem. Soc. Rev., 38, 2565 (2009)
  2. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577 (2011)
  3. Linden D, Reddy TB, Handbook of Batteries, 3rd ed, McGraw-Hill, New York, 2002 Chapter 38.
  4. Zhang T, Tao Z, Chen J, Mater. Horiz., 1, 196 (2014)
  5. Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X, Green Energy Environ., 2, 246 (2017)
  6. Yeager E, J. Mol. Catal., 38, 5 (1986)
  7. Neburchilov V, Wang HJ, Martin JJ, Qu W, J. Power Sources, 195(5), 1271 (2010)
  8. Si F, Zhang Y, Yan L, Zhu J, Xiao M, Liu C, Xing W, Zhang J, Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, 2014 Chapter 4.
  9. Yu D, Nagelli E, Du F, Dai L, J. Phys. Chem. Lett., 1, 2165 (2010)
  10. Yeager E, Electrochim. Acta, 29, 1527 (1984)
  11. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM, Nat. Mater., 6(3), 241 (2007)
  12. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315, 493 (2007)
  13. Wang DL, Xin HLL, Hovden R, Wang HS, Yu YC, Muller DA, DiSalvo FJ, Abruna HD, Nat. Mater., 12(1), 81 (2013)
  14. Chen Z, Choi JY, Wang HJ, Li H, Chen ZW, J. Power Sources, 196(7), 3673 (2011)
  15. Cheng F, Su Y, Liang J, Tao Z, Chen J, Chem. Mater., 22, 898 (2010)
  16. Ye Y, Kuai L, Geng B, J. Mater. Chem., 22, 19132 (2012)
  17. Xia DG, Liu SZ, Wang ZY, Chen G, Zhang LJ, Zhang L, Hui SQ, Zhang JJ, J. Power Sources, 177(2), 296 (2008)
  18. Jin Z, Li P, Xiao D, Sci. Rep., 4, 6712 (2014)
  19. Falkowski JM, Concannon NM, Yan B, Surendranath Y, J. Am. Chem. Soc., 137(25), 7978 (2015)
  20. Cao DX, Wieckowski A, Inukai J, Alonso-Vante N, J. Electrochem. Soc., 153(5), A869 (2006)
  21. Chen Z, Higgins D, Yu A, Zhang L, Zhang J, Energy Environ. Sci., 4, 3167 (2011)
  22. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F, Coord. Chem. Rev., 119, 89 (1992)
  23. Wu G, More KL, Johnston CM, Zelenay P, Science, 322, 443 (2011)
  24. Horowitz HS, Longo JM, Horowitz HH, J. Electrochem. Soc., 130, 1851 (1983)
  25. Oh SH, Nazar LF, Adv. Eng. Mater., 2, 903 (2012)
  26. Beyerlein RA, Horowitz HS, Longo JM, Leonowicz ME, Jorgensen JD, Rotella FJ, J. Solid State Chem., 51, 253 (1984)
  27. Subramanian MA, Aravamudan G, Rao GVS, Prog. Solid State Chem., 15, 55 (1983)
  28. Akazawa T, Inaguma Y, Katsumata T, Hiraki K, Takahashi T, J. Cryst. Growth, 271(3-4), 445 (2004)
  29. Oh SH, Black R, Pomerantseva E, Lee JH, Nazar LF, Nat. Chem., 4, 1004 (2012)
  30. Oh SH, Adams BD, Lee B, Nazar LF, Chem. Mater., 27, 2322 (2015)
  31. Horowitz HS, Longo JM, Lewandowski JT, Mater. Res. Bull., 16, 489 (1981)
  32. Beyerlein RA, Horowitz HS, Longo JM, J. Solid State Chem., 72, 2 (1988)
  33. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  34. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y, Acs Nano, 2, 463 (2008)
  35. Novoselov KS, ECS Trans., 19, 3 (2009)
  36. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  37. Zhou X, Qiao J, Yang L, Zhang J, Adv. Eng. Mater., 4, 130152 (2014)
  38. Park HW, Lee DU, Nazar LF, Chen ZW, J. Electrochem. Soc., 160(2), A344 (2013)
  39. Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ, Nat. Mater., 10(10), 780 (2011)
  40. Wu ZS, Yang SB, Sun Y, Parvez K, Feng XL, Mullen K, J. Am. Chem. Soc., 134(22), 9082 (2012)
  41. Park AR, Kim JS, Kim KS, Zhang K, Park J, Park JH, Lee JK, Yoo PJ, ACS Appl. Mater. Interfaces, 6, 1702 (2014)
  42. Gao YQ, Wang ZG, Wan JX, Zou GF, Qian YT, J. Cryst. Growth, 279(3-4), 415 (2005)
  43. Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J, J. Phys. Chem. C, 113, 4357 (2009)
  44. Zhang JT, Zhao ZH, Xia ZH, Dai LM, Nat. Nanotechnol., 10(5), 444 (2015)
  45. Wu QM, Rao ZX, Yuan LZ, Jiang LH, Sun GQ, Ruan JM, Zhou ZC, Sang SB, Electrochim. Acta, 150, 157 (2014)
  46. Lee S, Lee YW, Kwak DH, Lee JY, Han SB, Sohn JI, Park KW, J. Ind. Eng. Chem., 43, 170 (2016)
  47. Goodenough JB, Manoharan R, Paranthaman M, J. Am. Chem. Soc., 112, 2076 (1990)
  48. Mei X, Meng X, Wu F, Phys. E, 68, 81 (2015)
  49. Fujii K, Sato Y, Takase S, Shimizu Y, J. Electrochem. Soc., 162(1), F129 (2015)
  50. Zhao Y, Song X, Song Q, Yin Z, CrystEngComm, 14, 6710 (2012)
  51. Wang H, Hao Q, Yang X, Lu L, Wang X, Nanoscale, 2, 2164 (2010)
  52. Childres I, Jauregui LA, Park W, Cao H, Chen YP, Developments in Photon and Materials Research, Nova Science Publishers, 2013 978-1-62618-384-1.
  53. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  54. Lim EJ, Choi SM, Seo MH, Kim Y, Lee S, Kim WB, Electrochem. Commun., 28, 100 (2013)
  55. Lee K, Ahmed MS, Jeon S, J. Electrochem. Soc., 162(1), F1 (2015)
  56. McCrory CCL, Jung SH, Peters JC, Jaramillo TF, J. Am. Chem. Soc., 135(45), 16977 (2013)
  57. Devaguptapu SV, Hwang S, Karakalos S, Zhao S, Gupta S, Su D, Xu H, Wu G, ACS Appl. Mater. Interfaces, 9, 44567 (2017)
  58. Lee SU, Kim BJ, Chen Z, J. Mater. Chem. A, 1, 4754 (2013)
  59. Li YG, Hasin P, Wu YY, Adv. Mater., 22(17), 1926 (2010)