화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.8, 469-476, August, 2019
Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3
E-mail:
A lead-free bulk ceramic having a chemical formula Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3 (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.
  1. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma K, Nagaya T, Nakamura M, Nature, 432, 84 (2004)
  2. Tiwari B, Choudhary RNP, IEEE Trans. Dielectr. Insul., 17, 5 (2010)
  3. Leontsev SO, Eitel RE, J. Mater. Res., 26, 9 (2011)
  4. Smolenskii G, Isupov V, Agranovskaya A, Krainik N, Sov. Phys. Solid State, 2, 2651 (1961)
  5. Ichiki M, Zhang L, Tanaka M, Maeda R, J. Eur. Ceram. Soc., 24, 1693 (2004)
  6. Wang P, Li Y, Lu Y, J. European Ceram. Soc., 31, 2005 (2011)
  7. Sun HL, Zheng QJ, Wan Y, Chen Y, Wu X, Kwok KW, Chan HLW, Lin DM, J. Mater. Sci. Mater. Electron., 26, 5270 (2015)
  8. Xiong W, J. Electron. Mater., 45, 4005 (2016)
  9. Mao W, Chen W, Wang X, Zhu Y, Maa Y, Xue H, Chu L, Yang J, Li X, Huang W, Ceram. Int., 42, 12838 (2016)
  10. Buttner RH, Maslen EN, Acta Crystallogr. Sect. B-Struct. Sci., 48, 764 (1992)
  11. Grier D, McCarthy G, North Dakota State University, Fargo, North Dakota, USA., ICDD Grant-in-Aid, p.1 (1991).
  12. Garcia JE, Gomis V, Perez R, Albareda A, Eiran JA, Appl. Phys. Lett., 91, 042902 (2007)
  13. Sahu M, Pradhan SK, Hajra S, Panigrahi BK, Choudhary RNP, Appl. Phys. A-Mater. Sci. Process., 125, 183 (2019)
  14. Hajra S, Tripathy A, Panigrahi BK, Choudhary RNP, Mater. Res. Express, 6, 076304 (2019)
  15. Wang T, Hu J, Yang H, Jin L, Wei X, Li C, Yan F, Lin Y, J. Appl. Phys., 121, 084103 (2017)
  16. Ajabshir SZ, Niasari MS, Hamadaniana M, RSC Adv., 5, 33792 (2015)
  17. Almond DP, West AR, Solid State Ion., 11, 57 (1983)
  18. Dash S, Choudhary RNP, Kumar A, J. Phys. Chem. Solids, 75, 1376 (2014)
  19. Yang H, Yan F, Zhang G, Lin Y, Wang F, J. Alloy. Compd., 720, 116 (2017)
  20. Jonscher AK, Nature, 267, 673 (1977)
  21. Ram M, Phys. B, 405, 602 (2010)
  22. Jain H, Mundy JN, J. Non-Cryst. Solids, 91, 315 (1987)
  23. Ghosh A, Phys. Rev. B, 42, 1388 (1990)
  24. El-Nahass MM, Atta AA, Kamel MA, Huthaily SY, Vacuum, 91, 14 (2013)
  25. Barick S, Ahemed S, Hajra S, Appl. Phys. A-Mater. Sci. Process., 125, 200 (2019)
  26. Kroger HJ, Vink FA, Solid State Phys., 3, 307 (1956)
  27. Hirose N, West AR, J. Am. Ceram. Soc., 79, 1633 (1996)
  28. MacDonald JR, Solid State Ion., 13, 147 (1984)