화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.3, 123-139, August, 2019
Scaling analysis on the linear viscoelasticity of cellulose 1-ethyl-3-methyl imidazolium acetate solutions
E-mail:
Many researches have studied the viscoelasticity of cellulose/ionic liquid solutions through the conventional scaling rules which assume the monodisperse polymer. However, they are not suitable for cellulose since natural polymers such as cellulose have molecular weight distribution. In this paper, dynamic rheological behaviors of 1-ethyl-3-methyl imidazolium acetate solutions dissolving three kinds of celluloses were measured in a large range of concentrations from the dilute regime to the entangled semidilute regime at 25°C. We compared the viscosity-fitting scaling (Chen et al., 2011) and the phenomenological scaling to replace the conventional scaling. Two scaling methods were applied to the linear viscoelasticity of the cellulose solutions with different molecular weights and molecular weight distributions. The results of each scaling were compared by the superposition of master curves obtained from each scaling. The effects of molecular weight distribution were observed by the dependence of the scaling factors on concentration and molecular weight of cellulose.
  1. Bae JE, Cho KS, J. Non-Newton. Fluid Mech., 235, 64 (2016)
  2. Chen X, Zhang YM, Wang HP, Wang SW, Liang SW, Colby RH, J. Rheol., 55(3), 485 (2011)
  3. Chen X, Zhang XY, Cheng L, Wang H, J. Polym. Environ., 17, 273 (2009)
  4. Cho KS, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer, New York 2016.
  5. Cho KS, Kim JW, Bae JE, Youk JH, Jeon HJ, Song KW, Korea-Aust. Rheol. J., 27(2), 151 (2015)
  6. Colby RH, Rheol. Acta, 49(5), 425 (2010)
  7. Colby RH, Fetters LJ, Funk WG, Graessley WW, Macromolecules, 24, 3873 (1991)
  8. Collier JR, Watson JL, Collier BJ, Petrovan S, J. Appl. Polym. Sci., 111, 1019 (2008)
  9. Dealy JM, Larson RG, Structure and Rheology of Molten Polymers: From Structure to Flow Behavior and Back Again 2006.
  10. Fuchs K, Friedrich C, Weese J, Macromolecules, 29(18), 5893 (1996)
  11. Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T, Biomacromolecules, 10(5), 1188 (2009)
  12. Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS, Biomacromolecules, 13(5), 1688 (2012)
  13. Kim SM, Lee JH, Kim SH, Cho KS, Korea-Aust. Rheol. J., 30(1), 21 (2018)
  14. Kosan B, Michels C, Meister F, Cellulose, 15, 59 (2008)
  15. Kosan B, Schwikal K, Meister F, Cellulose, 17, 495 (2010)
  16. Kuang QL, Zhao JC, Niu YH, Zhang J, Wang ZG, J. Phys. Chem. B, 112(33), 10234 (2008)
  17. Lee YJ, Kwon MK, Lee SJ, Jeong SW, Kim HC, Oh TC, Lee SG, J. Appl. Polym. Sci., 134, 44658 (2016)
  18. Lu F, Cheng B, Song J, Liang Y, J. Appl. Polym. Sci., 124, 3419 (2011)
  19. Lu F, Song J, Cheng BW, Ji XJ, Wang LJ, Cellulose, 20, 1343 (2013)
  20. Lv YX, Wu J, Zhang JM, Niu YH, Liu CY, He JS, Zhang J, Polymer, 53(12), 2524 (2012)
  21. Maeda A, Inoue T, Sato T, Macromolecules, 46, 7118 (2013)
  22. Malkin AY, Masalova I, Rheol. Acta, 40(3), 261 (2001)
  23. Morse DC, Phys. Rev. E, 58, R1237 (1997)
  24. Regalado EJ, Selb J, Candau F, Macromolecules, 32, 8501 (1999)
  25. Rubinstein M, Colby RH, Polymer Physics, 2003.
  26. Sammons RJ, Collier JR, Rials TG, Petrovan S, J. Appl. Polym. Sci., 110(2), 1175 (2008)
  27. Seddon K, J. Chem. Technol. Biotechnol., 68, 351 (1996)
  28. Sescousse R, Le KA, Ries ME, Budtova T, J. Phys. Chem. B, 114(21), 7222 (2010)
  29. Song HZ, Zhang J, Niu YH, Wang ZG, J. Phys. Chem. B, 114(18), 6006 (2010)
  30. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974 (2002)
  31. Tsenoglou C, Macromolecules, 24, 1762 (1991)
  32. Wang L, Gao L, Cheng B, Ji X, Song J, Lu F, Carbohydr. Polym., 110, 292 (2014)
  33. Watanabe H, Prog. Polym. Sci, 24, 1253 (1999)
  34. Xia X, Yao Y, Gong M, Wang H, Zhang Y, J. Polym. Res., 21, 512 (2014)
  35. Zhang H, Wu J, Zhang J, He JS, Macromolecules, 38(20), 8272 (2005)
  36. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G, Green Chem., 8, 325 (2006)