화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 448-454, October, 2019
Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction
E-mail:
Herein, we prepare various types of PtCo nanocatalysts with Pt skin structure for oxygen reduction reaction (ORR) in acidic electrolyte by utilizing post-treatments such as acid leaching, additional Pt reduction (PtCo-Pt (chem)), and thermal annealing (PtCo-Pt (annealed)). The physical and electrochemical properties of these catalyst were analyzed and compared to commercial Pt/C. The Pt skin structure nanocatalysts exhibited approximately improved catalytic activity by 2-fold compared with commercial Pt/C catalysts owing to the optimization of d-band center of Pt by alloying effect with Co. Furthermore, the accelerated degradation test (ADT) was conducted under harsh condition and the Pt skin structure nanocatalysts displayed the superior ORR activity to initial performance of commercial Pt/ C in spite of low loading amount of Pt. The causes of enhancement in long-term durability were investigated through several analysis after ADT subsequently. In particular, it is confirmed that the Pt skin structure of PtCo-Pt (chem) has contributed to improvement of durability by hindering dissolution of Co like as “nano-shield”.
  1. O’hayre R, Cha SW, Prinz FB, Colella W, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
  2. Specchia S, Francia C, Spinelli P, Electrochem. Technol. Energy Storage Convers., 1, 601 (2011)
  3. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC, Appl. Energy, 88(4), 981 (2011)
  4. Ehsani M, Gao Y, Emadi A, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, 2009.
  5. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H, J. Phys. Chem. B, 108(46), 17886 (2004)
  6. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 118(18), 2963 (2006)
  7. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M, J. Phys. Chem. B, 110(46), 23489 (2006)
  8. Wang DL, Xin HLL, Hovden R, Wang HS, Yu YC, Muller DA, DiSalvo FJ, Abruna HD, Nat. Mater., 12(1), 81 (2013)
  9. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR, J. Phys. Chem. B, 109(48), 22701 (2005)
  10. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR, Angew. Chem.-Int. Edit., 117(14), 2170 (2005)
  11. Casado-Rivera E, Volpe DJ, Alden L, Lind C, Downie C, Vazquez-Alvarez T, Angelo ACD, DiSalvo FJ, Abruna HD, J. Am. Chem. Soc., 126(12), 4043 (2004)
  12. Prabhudev S, Bugnet M, Bock C, Botton GA, ACS Nano, 7(7), 6103 (2013)
  13. Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P, Nano Lett., 12(11), 5885 (2012)
  14. Han B, Carlton CE, Kongkanand A, Kukreja RS, Theobald BR, Gan L, O’Malley R, Strasser P, Wagner FT, Shao-Horn Y, Energy Environ. Sci., 8(1), 258 (2015)
  15. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547 (2018)
  16. Wang C, Daimon H, Lee Y, Kim J, Sun S, J. Am. Chem. Soc., 129(22), 6974 (2007)
  17. Huang X, Zhao Z, Chen Y, Zhu E, Li M, Duan X, Huang Y, Energy Environ. Sci., 7(9), 2957 (2014)
  18. Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR, Nano Lett., 12(12), 6266 (2012)
  19. Tian X, Luo J, Nan H, Zou H, Chen R, Shu T, Li X, Li Y, Song H, Liao S, J. Am. Ceram. Soc., 138(5), 1575 (2016)
  20. Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic VR, Cuesta A, Markovic NM, Nat. Chem., 2(10), 880 (2010)
  21. Jung N, Bhattacharjee S, Gautam S, Park HY, Ryu J, Chung YH, Lee SY, Jang I, Jang JH, Park SH, NPG Asia Mater., 8(1), e237 (2016)
  22. Sharma M, Jung N, Yoo SJ, Chem. Mater., 30(1), 2 (2017)
  23. Zhang Y, Zang JB, Jia SP, Tian PF, Han C, Wang YH, Appl. Surf. Sci., 412, 327 (2017)
  24. Jung N, Chung YH, Chung DY, Choi KH, Park HY, Ryu J, Lee SY, Kim M, Sung YE, Yoo SJ, Phys. Chem. Chem. Phys., 15(40), 17079 (2013)
  25. Chung YH, Kim SJ, Chung DY, Lee MJ, Jang JH, Sung YE, Phys. Chem. Chem. Phys., 16(27), 13726 (2014)
  26. Jeon TY, Pinna N, Yoo SJ, Yu SH, Kim SK, Lim S, Peck D, Jung DH, Sung YE, J. Electroanal. Chem., 662(1), 70 (2011)
  27. Travitsky N, Ripenbein T, Golodnitsky D, Rosenberg Y, Burshtein L, Peled E, J. Power Sources, 161(2), 782 (2006)
  28. Antolini E, Mater. Chem. Phys., 78(3), 563 (2003)
  29. Jayasayee K, Van Veen JAR, Manivasagam TG, Celebi S, Hensen EJM, de Bruijn FA, Appl. Catal. B: Environ., 111, 515 (2012)
  30. Du S, Lu Y, Steinberger-Wilckens R, Carbon, 79, 346 (2014)
  31. Lu YX, Du SF, Steinberger-Wilckens R, Appl. Catal. B: Environ., 187, 108 (2016)
  32. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315(5811), 493 (2007)
  33. van der Vliet D, Wang C, Debe M, Atanasoski R, Markovic NM, Stamenkovic VR, Electrochim. Acta, 56(24), 8695 (2011)
  34. Chen C, Kang YJ, Huo ZY, Zhu ZW, Huang WY, Xin HLL, Snyder JD, Li DG, Herron JA, Mavrikakis M, Chi MF, More KL, Li YD, Markovic NM, Somorjai GA, Yang PD, Stamenkovic VR, Science, 343(6177), 1339 (2014)
  35. Jung N, Chung DY, Ryu J, Yoo SJ, Sung YE, Nano Today, 9(4), 433 (2014)
  36. Liu CW, Wei YC, Liu CC, Wang KW, J. Mater. Chem., 22(11), 4641 (2012)
  37. Liang HW, Cao XA, Zhou F, Cui CH, Zhang WJ, Yu SH, Adv. Mater., 23(12), 1467 (2011)