화학공학소재연구정보센터
Solar Energy, Vol.185, 165-188, 2019
Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs)
The access of dye-sensitized solar cells (DSSCs) in the photovoltaic market is still a challenge owing to low power-conversion-efficiency (PCE) and stability. The foremost aim of this review is to emphasize the technical issues in DSSCs that reduce their efficiency. A DSSC consists of glass substrates, photoanode, photosensitizer, electrolyte and catalytic counter-electrode. Electrode materials play a critical role in the photovoltaic (PV) performance of DSSCs. The PV performance of DSSCs depends on many factors e.g. electron collection at photoanode, light harvesting efficiency of photoanode, a scattering of electrons inside the photoanode, and the fast reduction of an electrolyte at the counter electrode. In this review, physical, electronic, and morphological properties of electrodes materials will be examined for efficient DSSCs. This review paper comprises of four parts. First part highlights the importance, structure and charge transport mechanism of DSSCs. The second section describes the types, electronic and morphological properties of photoanode materials. The third part covers the nature and catalytic properties of materials used for counter-electrodes. Finally, challenges, market and future directions of DSSCs will be described in the last part of this review.