화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.31, 16516-16525, 2019
Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts
In this article mesoporous nanocrystalline 5 wt%M-95 wt%MgAl2O4 (M: CeO2, ZrO2, La2O3) powders were prepared by a novel on-step sol-gel process and employed as a support for the synthesis of 5 wt%Ni catalysts for synthesis gas production via dry reforming. The magnesium aluminate spinel prepared with this sol-gel method possessed a high BET area of 264 m(2) g(-1) with a high pore volume of 0.436 cm(3) g(-1). The results indicated that the addition of promoters (CeO2, ZrO2, La2O3) to magnesium aluminate improved the BET area and pore volume and also decreased the crystallite size. Among the prepared powders and catalysts, 5 wt%La2O3-95 wt%MgAl2O4 and 5 wt%Ni/5 wt%Ce02-95 wt%MgAl2O4 exhibited the highest BET area of 306 (m2) g(-1) and 263 m(2) g(-1), respectively. The catalytic results indicated that the 5 wt%Ni/5 wt%CeO2-95 wt%MgAl2O4 catalyst exhibited the highest activity and the lowest carbon formation among the prepared catalysts with the same content of the promoter. The influence of the CeO2 content on the textural and catalytic performance was also investigated and the results illustrated that the increment in CeO2 content improved the methane conversion and reduced the amount of deposited carbon, which could be related to the redox properties of the catalyst support. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.