화학공학소재연구정보센터
Catalysis Today, Vol.335, 402-408, 2019
Zinc rhodium oxide and its possibility as a constituent photocatalyst for carbon dioxide reduction using water as an electron source
We evaluated the potential of zinc rhodium oxide (ZnRh2O4) as a carbon dioxide (CO2) reduction photocatalyst with the aid of triethanolamine (TEOA) as an electron donor and demonstrated that ZnRh2O4 was able to reduce CO2 to carbon monoxide (CO) under infrared light. Gold (Au) loading onto ZnRh2O4 greatly enhanced the CO2 reduction activity. Also, CO2 reduction was examined over a composite of ZnRh2O4 and bismuth vanadium oxide (Bi4V2O11) with inserted Au (ZnRh2O4/Au/Bi4V2O11) using H2O as the electron source, which led to the successful evolution of CO.