화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.514, No.4, 1244-1250, 2019
Vx-11e protects against titanium-particle-induced osteolysis and osteoclastogenesis by supressing ERK activity
Wear particle-induced osteolysis around the prosthesis is the most common long-term complication after total joint replacement surgery which often leads to aseptic loosening of the prosthesis. Osteoclasts play key roles in the osteolytic process. Currently there is a lack of clinically effective measures to prevent or treat ped-prosthetic osteolysis and thus identification of new agents that can inhibit the enhanced osteoclastic bone resorption is warranted. Through this study, we discovered that the specific and potent ERK1/2 inhibitor, Vx-11e, can protect against calvarial osteolysis caused by titanium (Ti) particles in vivo. Low doses of Vx-11e mildly reduced osteoclast resorption whilst no calvarial osteolysis was observed with high dose Vx-11e treatment. Histological examination showed fewer osteoclasts and reduced bone erosion in the Vx-11e treated groups. In vitro cellular analyses showed that Vx-11e inhibited osteoclast formation from BMM precursors in response to RANKL, as well as bone resorption by mature osteoclasts. Mechanistically, Vx-11e impaired RANKL-induced ERKI/2 signaling by inhibiting its kinase activity thereby blocking the phosphorylation of downstream substrates. Moreover, Vx-11e significantly reduced the expression of RANKL-mediated genes such as ACP5/TRAcP, CTR, MMP-9, CISK. Collectively, our data provides evidence for the potential therapeutic use of Vx-11e for the treatment of osteolysis diseases caused by extremely actived osteoclastogenesis. (C) 2019 Elsevier Inc. All rights reserved.