화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.103, No.15, 6187-6194, 2019
Functional genetic analysis of the leucinostatin biosynthesis transcription regulator lcsL in Purpureocillium lilacinum using CRISPR-Cas9 technology
Purpureocillium lilacinum is a promising commercial agent for controlling plant-parasitic nematodes and plant pathogens. Leucinostatins are a family of lipopeptides produced by P. lilacinum that are synthesized, modified, and regulated by a gene cluster consisting of 20 genes. Sequence analyses have indicated that lcsL, a gene in the lcs cluster, is a putative bZIP transcription factor. In this study, the CRISPR-Cas9 system was introduced to increase the efficiency of homologous recombination for the disruption of lcsL. The expression of genes in the cluster was significantly reduced in lcsL disruption mutants, and the output of leucinostatins was decreased to undetectable levels. In the lcsL overexpression strain, the expression of genes in the cluster and the yield of leucinostatins were all increased. The antagonism of both the wild type and mutant against Phytophthora infestans was also consistent with the gene expression and the output of leucinostatins. These results indicate that the gene lcsL is crucial for the regulating the synthesis of leucinostatins.