화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.4, 553-558, August, 2019
실린더형 MoSi2계 발열체의 유도가열 적용
Induction Heating of Cylinderical MoSi2-based Susceptor
E-mail:
초록
본 연구에서는 슬립캐스팅 성형법을 이용하여 실린더형 MoSi2계 세라믹 서스셉터를 개발하여 고온 유도가열에 적용시켰다. MoSi2계 소재는 SHS법(Self-propagating High-temperature Synthesis)으로 합성하였고 XRD 분석을 통해 합성된 상과 결정구조를 확인하였다. 합성된 소재로 실린더 성형체를 제작하기 위해 슬립캐스팅을 진행하였고 슬립의 고형분 함량 및 유지시간을 조절하여 실린더 성형체의 두께를 제어하였다. 최종적으로 성형체 소결을 통해 유도가열 발열체를 제작하였고 열처리과정 중 표면에 형성된 SiO2층은 SEM/EDS 분석을 통해 확인하였다. 서스셉터로서의 가열성능을 평가하기 위해 유도가열기로 일정한 출력을 인가하였을 때 (Mo, W)Si2 실린더 서스셉터의 표면온도를 측정하여 출력 2 kW를 인가하였을 때 발열특성을 분석하였으며, 서스셉터 표면의 최고 온도는 1457 °C, 평균 승온속도는 19 °C /s로 우수한 가열 특성을 나타냈다.
In present study, the cylindrical susceptor by the slip casting method was designed to apply high-temperature induction heating by using (Mo, W)Si2 ceramics. MoSi2-based materials were synthesized by SHS (Self-propagating High-temperature Synthesis) method. The phase and crystal structure of MoSi2-based materials were confirmed by XRD analysis. The shape of cylindrical mold was synthesized for various thickness by using the slip casting method. Finally, the susceptor for induction heating was processed by sintering and heat treatment to form SiO2 layer, which was confirmed on the surface of susceptor by SEM/EDS analysis. To evaluate the heating performance of (Mo, W)Si2 cylinder susceptor, we measured the maximum surface temperature and heating rate in comparison with the rod heating element under constantly applied power. The induction heating of the (Mo, W)Si2 cylinder showed excellent heating performance, reaches the maximum temperature of 1457 °C, with the average heating rate of 18.64 °C/s at 2 kW.
  1. Yoo SB, Lee DY, Hyun DS, The Korean Institute of Electrical Engineers, 50(2), 21-29(2001).
  2. Jung YC, Park BW, Jo KY, The Korean Institute of Electrical Engineers, 50(2), 15-20(2001).
  3. Park HS, Shin KS, Jurnal of the Korean Institute of Metals and Materials, 33(6), 750-756(1995).
  4. Panneerselvam M, Agrawal A, Rao KJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 356(1-2), 267 (2003)
  5. Lee SJ, Jang YS, Kim IS, Park HC, Oh KD, J. Korean Ceramic Society, 32, 1085 (1995)
  6. Song IH, Yun JY, Kim HD, J. Korean Ceramic Society, 41(1), 62 (2004)
  7. Kim WB, Shim KJ, Jang DK, Suh CY, Korean J. Mater. Res., 7(9), 763 (1997)
  8. Hampton JHD, Savage SB, Drew RA, Journal of the American Ceramic Society, 71(12), 1040-1045(1988).
  9. Zakeri M, Yazdani-Rad R, Enayati MH, Rahimipour MR, J. Alloy. Compd., 403(1-2), 258 (2005)
  10. Zhang S, Munir ZA, J. Mater. Sci., 26(13), 3685 (1991)
  11. Merzhanov AG, Combustion and Plasma Synthesis of High-Temperature Materials, 1-53(1990).
  12. Tiller FM, Tsai CD, Journal of the American Ceramic Society, 69(12), 882-887(1986).
  13. Adcock DS, McDowall IC, Journal of the American Ceramic Society, 40(10), 355-360(1957).
  14. Hoffmann MJ, Nagel A, Greil P, Petzow G, Journal of the American Ceramic Society, 72(5), 765-769(1989).
  15. Hansson K, Halvarsson M, Tang JE, Pompe R, Sundberg M, Svensson JE, J. European Ceram. Soc., 24(13), 3559 (2004)
  16. Lee DW, Lee SH, Kim YN, Lee SC, Koo SM, Oh JM, J. Korean Inst. Electr. Electron. Mater. Eng., 30(10), 631 (2017)