화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.76, 215-222, August, 2019
Formation of MgCO3·3H2O in the CO2 mineralization system using Mg(OH)2 as an intermediate at 20 °C
E-mail:
The formation of MgCO3·3H2O in the CO2 mineralization system was investigated using Mg(OH)2 as an intermediate at 20 °C. Liquid and solid analyses were done for qualitative and quantitative composition characterizations of the reacted samples. Results showed that the morphology of Mg(OH)2 had an obvious effect on the growth rate, size and morphology of MgCO3·3H2O. The formation of MgCO3·3H2O might be explained by the dissolution?recrystallization mechanism. Larger bundle-like MgCO3·3H2O which composed of middle-binding rod crystals was obtained from the plate-like Mg(OH)2. These findings could pave the way for controllable crystallization of MgCO3·3H2O in a CO2 mineralization system.
  1. Romanov V, Soong Y, Carney C, Rush GE, Nielsen B, O’Connor W, ChemBioEng Rev., 2, 231 (2015)
  2. Lackner K, Brennan S, Clim. Change, 96, 357 (2009)
  3. Ferrini V, De Vito C, Mignardi S, J. Hazard. Mater., 168(2-3), 832 (2009)
  4. Sun BC, Zhou HJ, Arowo M, Chen JM, Chen JF, Shao L, Powder Technol., 284, 57 (2015)
  5. Chen GL, Song XF, Xu YX, Yu JG, Ind. Eng. Chem. Res., 56(24), 7100 (2017)
  6. Xie HP, Wang YF, Chu W, Ju Y, Environ. Sci. Technol., 59, 2882 (2014)
  7. Zheng MP, Deng TL, Oren A, Introduction to salt lake sciences, Science Press, Beijing, 2018.
  8. Wang DG, Li ZB, Ind. Eng. Chem. Res., 51(50), 16299 (2012)
  9. Loring JS, Thompson CJ, Zhang C, Wang Z, Schaef HT, Rosso KM, J. Phys. Chem. A, 116, 4768 (2012)
  10. Schaef HT, Windisch CF, McGrail BP, Martin PF, Rosso KM, Geochim. Cosmochim. Acta, 75, 7458 (2011)
  11. Bearat H, McKelvy MJ, Chizmeshya AVG, Sharma R, Carpenter RW, J. Am. Ceram. Soc., 85(4), 742 (2002)
  12. Surface JA, Skemer P, Hayes SE, Conradi MS, Environ. Sci. Technol., 47, 119 (2013)
  13. Han B, Qu HY, Niemi H, Sha ZL, Louhi-Kultanen M, Ind. Eng. Chem. Res., 53(30), 12077 (2014)
  14. Montes-Hernandez G, Renard F, Chiriac R, Findling N, Toche F, Cryst. Growth Des., 12, 5233 (2012)
  15. Cheng WT, Li ZB, Ind. Eng. Chem. Res., 49(4), 1964 (2010)
  16. Cheng WT, Li ZB, Cryst. Res. Technol., 44, 937 (2009)
  17. Cheng WT, Li ZB, Demopoulos GP, Chinese. J. Chem. Eng., 17, 661 (2009)
  18. Dong M, Cheng WT, Li ZB, Demopoulos GP, J. Chem. Eng. Data., 53, 2586 (2008)
  19. Pilarska AA, Klapiszewski L, Jesionowski T, Powder Technol., 319, 373 (2017)
  20. Pye CC, Rudolph WW, J. Phys. Chem. A, 102(48), 9933 (1998)
  21. Tommaso DD, de Leeuw NH, Phys. Chem. Chem. Phys., 12, 894 (2010)
  22. Sato H, Morita A, Ono K, Nakano H, Wakabayashi N, Yamagishi A, Langmuir, 19(17), 7120 (2003)
  23. Lv Y, Zhang ZA, Lai YQ, Li J, Liu YX, Cryst Eng Comm., 13, 3848 (2011)
  24. Botha A, Strydon CA, Hydrometallurgy, 62, 175 (2001)
  25. Mullin JW, Crystallization, 4th ed., Butterworth-Heinemann, Oxford, 1961.
  26. Sand KK, Rodriguez-Blanco JD, Makovicky E, Benning LG, Stipp SLS, Cryst. Growth. Des., 12, 842 (2012)
  27. Wang Y, Li ZB, Demopoulos GP, J. Cryst. Growth, 310(6), 1220 (2008)
  28. Liu C, Ji YH, Bai Y, Cheng FQ, Lu XH, Fluid Phase Equilib., 261(1-2), 300 (2007)
  29. Chao CY, Ren ZH, Yin SM, Xu G, Gong SY, Yang X, Li X, Shen G, Han GR, Adv. Powder Technol., 25(2), 745 (2014)