화학공학소재연구정보센터
Clean Technology, Vol.25, No.2, 153-160, June, 2019
CFD에 의한 선박용 DPF/DOC내 배기가스의 유동 균일도 및 특성 연구
Study on the Flow Uniformity and Characteristics of Exhaust gas in Diesel Particulate Filter/Diesel Oxidation Catalyst of Ship Diesel Reduction System by Computational Fluid Dynamics
E-mail:
초록
디젤 선박 운행 횟수의 증가로 인한 대기오염이 심각해짐에 따라 선박의 유해배출가스에 대한 규제가 강화되고 있다. 따라서 선박용 디젤 배기 후처리 장치의 개발이 요구되고 배기 처리 장치는 유동 균일도가 높을수록 처리효율이 증가된다. 본 연구에서는 ANSYS Fluent를 이용하여 기존 저감장치, 저감장치 내부의 Baffle 설치시, 배기가스 유량에 따른 배압과 유동 균일도를 시뮬레이션 하였다. 기존 장치조건에서는 시스템 배압이 38 ~ 40 mbar로 나타났으며, 유동 균일도는 DOC 입구와 출구에서 약 84 ~ 92%로 나타났다. 시스템 내부에 Baffle을 설치한 경우 압력이 상승되고 유속 증가로 인해 유동 균일도가 낮아진다. 배기가스 유량을 7,548 kg h-1에서 3,772 kg h-1로 50% 감소했을 때, 낮은 유속에 의해 DOC 입구와 출구의 유동 균일도는 약 1 ~ 3% 증가했다. DPF의 경우 불균일한 유동이 DOC를 균일하게 거쳐 흐른 후 유입되기 때문에 유동 균일도가 98 ~99%로 높게 나타났다.
As air pollution becomes more serious due to the increased number of diesel vessel operations, ship regulations on harmful emissions strengthen. Therefore, the development of a diesel exhaust after-treatment system for ships is required, and the higher the flow uniformity of the exhaust treatment system, the higher the treatment efficiency. With the computer software ANSYS Fluent, pressure drop and flow uniformity were used in this study to simulate flow rate with and without a baffle in both a Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) system. The system pressure drop was found to be 38 to 40 mbar in the existing system condition, and the flow uniformity was approximately 84 to 92% at the inlet and outlet of the DOC. When the baffle was installed inside the system, the pressure increased and the flow uniformity was lowered due to an increase in flow rate. When the exhaust gas flow was reduced by 50% from 7,548 kg h-1 to 3,772 kg h-1, the flow uniformity at the inlet and outlet of the DOC increased by approximately 1 to 3% due to the low flow rate. In the case of DPF, the flow uniformity of exhaust gas was 98 to 99% because the uneven flow proceeded after uniformly flowing from the DOC.
  1. IMO, “Third IMO greenhouse gas study,” International Maritime Organization (2014).
  2. IMO, “Report of the marine environment protection committee on its’ fifty-eighth session . revised MARPOL annex VI,” International Maritime Organization (17 October, 2008).
  3. IMO, “Report of the marine environment protection committee on its’ fifty-eighth session . revised NOx technical code,” International Maritime Organization (17 October, 2008).
  4. Choi BK. Cho JD, Korean Society of Automotive Engineers Conference, 357-360 (2002).
  5. Jeong SY, Lee W. Lee GS. Kim KH. Bae SH. Kim HS, Korean Society of Automotive Engineers Conference, 280-284 (2006).
  6. Lemme C, Givens W, SAE Technical Paper 740243 (1974).
  7. Johnson W, Chang J, SAE Technical Paper 740196 (1974).
  8. Lai MC, Kim JY, Cheng CY, Li P, Chui G, Pakko JD, SAE Technical Paper 910200 (1991).
  9. Baxendale AJ, 94 Interanional E/G Design, Sterling Publication, Ltd., 126-130 (1994).
  10. Weltens H, Bressler H, Terres F, Neumaier H, Rammoser D, SAE Technical Paper 930780 (1993).
  11. Ahn JY. Ku JH. Park JK. Kim JW, KSAE 81-86 (2007).