화학공학소재연구정보센터
Clean Technology, Vol.25, No.2, 114-122, June, 2019
폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성
Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather
E-mail:
초록
최근 재생자원으로부터 바이오 폴리올을 합성하는 것이 주목을 받고 있다. 특히 고분자의 합성에서 이러한 바이오 폴리올을 활용하는 것은 대단히 중요한 과제이다. 폴리카보네이트 폴리올/바이오 폴리올(PO3G: 옥수수 당의 발효에 의해 제조된 1,3-프로판 디올로부터 제조된 폴리트리메틸렌 에터 글리콜), 메틸렌디페닐디이소시아네이트 및 1,4-부탄디올을 사용하여 일련의 디메틸포름아미드(DMF) 기반 폴리우레탄을 합성하였다. 본 연구에서는 폴리우레탄 필름의 특성과 습식 인조피혁의 셀(cell) 특성을 조사하였다. 폴리카보네이트 폴리올/바이오 폴리올에서 바이오 폴리올의 함량이 증가할수록 폴리우레탄필름의 인장강도는 감소하지만 연신율은 증가하였으며, 유리전이온도는 낮아짐을 알 수 있었다. 또한 습식공법에 의한 인조피혁 단면을 분석한 결과 폴리카보네이트 폴리올 함량이 증가함에 따라 인조피혁에 형성된 셀의 수와 균일성이 증가함을 알 수 있었다. 이 결과로부터 적정량의 바이오 폴리올을 사용한 DMF 기반 폴리우레탄의 경우에 충분히 인조피혁에 사용할 수 있음을 알 수 있었다. 바이오 탄소 함량은 폴리우레탄의 제조에 사용한 바이오 폴리올의 함량 증가에 따라 비례하여 증가하였다.
The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.
  1. Raquez JM, Nabar Y, Narayan R, Dubois P, Int. Polym. Process., 22(5), 463 (2007)
  2. Saxena R, Adhikari D, Goyal H, Renew. Sust. Energ. Rev., 13, 167 (2009)
  3. Biermann U, Bornscheuer U, Meier MA, Metzger JO, Angew HJ, Int. Ed., 50, 3854 (2011)
  4. Van A, Chiou K, Ishida H, Polymer, 55(6), 1443 (2014)
  5. Crocher M, Crofcheck C, Energeia, 17, 1 (2006)
  6. Espinoso LM, Meier MA, Polym. J., 47, 837 (2011)
  7. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 110(6), 3552 (2010)
  8. No SY, Renew. Sust. Energ. Rev., 15, 131 (2011)
  9. Pillai CK, Pillai S, Sharma CP, Monomers Polym., 34, 641 (2009)
  10. Ryu YS, Oh KW, Kim SH, Macromol. Res., 24(10), 874 (2016)
  11. Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
  12. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
  13. Sims REH, Mabee W, Saddler JN, Taylor M, Bioresour. Technol., 101(6), 1570 (2010)
  14. Clark JH, Chem J, Technol. Biotechnol., 82, 603 (2007)
  15. da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE, Chem. Eng. Res. Des., 87(9A), 1276 (2009)
  16. Yao YG, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 60(11), 1939 (1996)
  17. Yan YB, Pang H, Yang XX, Zhang RL, Liao B, J. Appl. Polym. Sci., 110(2), 1099 (2008)
  18. Petrovic ZS, Wan X, Bilic O, Zlztanic A, Hong J, Deruson D, J. Am. Oil Chem. Soc., 90, 1073 (2013)
  19. Posten C, Schaub G, J. Biotechnol., 142, 64 (2009)
  20. Fenton O, Algal Res., 1, 49 (2012)
  21. Yoon JJ, Kim YJ, Kim SH, Kim HJ, Ryu JY, Choi GS, Shin MK, Adv. Mater. Res., 93, 463 (2010)
  22. Pfister DP, Xia Y, Larock RC, ChemSusChem., 4, 703 (2011)
  23. Głowiʼnska E, Datta J, Ind. Crop. Prod., 60, 123 (2014)
  24. Shen L, Haufe J, Patel MK, Report for EPNOE and European Bioplastics, 243 (2009).
  25. Dieterich D, Webele W, Witt H, J. Gesellschaft Deutcher Chemiker, 9, 40 (1970)
  26. Cho CH, Seo HD, Min BH, Cho K, Noh ST, Choi HG, Cho YH, Kim JH, J. Korea Ind. Eng. Chem., 13, 825 (2002)
  27. Billmeyer, Fred W, “Textbook of Polymer Science,” Wiley, New York, 244-255 (2003).
  28. Huang M, Yang BY, Yong QF, “Polyurethane Shape Memory Polymer,” CRC Press, Boca Raton, 34-36 (2003).
  29. Fried, Joel R, “Polymer Science and Technology,” Prentice Hall PTR, New Jersey, 180-182 (2003).
  30. Kesslmeier J, Staudt M, J. Atmospheric Chem., 33, 23 (1999)
  31. Wang S, Ang HM, Tade MO, Environment International, 33, 694 (2007)
  32. Oertel G, “Polyurethane Handbook,” Carl Hanser Verlag, Munich, 555-564 (1993).