화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.7, 1172-1183, July, 2019
Fabrication of optimally configured layers of SWCNTs, gold nanoparticles, and glucose oxidase on ITO electrodes for high-power enzymatic biofuel cells
E-mail:
We designed an enzymatic biofuel cell (EFC) that utilizes indium tin oxide (ITO) electrodes, and sequential deposition of single-walled carbon nanotube (SWCNT) and gold nanoparticle (AuNP) layers on the electrodes to enhance their electron transfer. Cyclic voltammograms of the SWCNT-modified ITO electrodes showed higher peak currents compared to those of the bare ITO electrodes. Immobilization of glucose oxidase (GOD) on SWCNT-modified ITO electrodes increased their electron transfer resistance by a factor of ten, which could be mitigated by incorporating an AuNP layer between the GOD and SWCNT layers. The single-layer GOD generated higher current than the doubled-layer GOD, with higher specific activity. The assembled EFC featured SWCNT-modified ITO electrodes with sequential layers of immobilized AuNPs and GOD (anode), and with a single layer of immobilized bilirubin oxidase (BOD) (cathode). The cathode performance was further improved by the presence of AuNPs between the BOD and SWCNTs on cathode. The enhanced electron transfer kinetics and enzymatic activity observed for SWCNT/AuNPmodified ITO electrodes resulted in a maximum power density of 38.2±2.0 μW/cm2 at 0.57±0.03 V of a cell voltage.
  1. Cosnier S, Goff AL, Holzinger M, Electrochem. Commun., 38, 19 (2014)
  2. Zhong ZY, Qian L, Tan Y, Wang G, Yang L, Hou CT, Liu AH, J. Electroanal. Chem., 823, 723 (2018)
  3. Scherbahn V, Putze MT, Dietzel B, Heinlein T, Schneider JJ, Lisdat F, Biosens. Bioelectron., 61, 631 (2014)
  4. Krikstolaityte V, Lamberg P, Toscano MD, Silow M, Eicher-Lorka O, Ramanavicius A, Niaura G, Abariute L, Ruzgas T, Shleev S, Fuel Cells, 14, 792 (2014)
  5. Zayats M, Willner B, Willner I, Electroanalysis, 20, 583 (2008)
  6. Zebda A, Gondran C, Goff AL, Holzinger M, Cinquin P, Cosnier S, Nat. Commun., 2, 370 (2011)
  7. Falk M, Blum Z, Shleev S, Electrochim. Acta, 82, 191 (2012)
  8. Zhao M, Gao Y, Sun J, Gao F, Anal. Chem., 87, 2615 (2015)
  9. Yehezkeli O, Tel-Vered R, Raichlin S, Willner I, ACS Nano, 5, 2385 (2011)
  10. Zebda A, Cosnier S, Alcaraz JP, Holzinger M, LeGoff A, Gondron C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P, Sci. Rep., 3, 1516 (2013)
  11. Yu EH, Scott K, Energies, 3, 23 (2010)
  12. Heller A, Curr. Opin. Chem. Biol., 10, 664 (2006)
  13. Mano N, Mao F, Heller A, Chembiochem, 5, 1703 (2004)
  14. Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, et al., Nat. Commun., 5, 3928 (2014)
  15. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 30128 (2016)
  16. Yang W, Wang J, Zhao S, Sun Y, Sun C, Electrochem. Commun., 8, 665 (2006)
  17. Zhang J, Feng M, Tachikawa H, Biosens. Bioelectron., 22, 3036 (2007)
  18. Wang X, Kim SB, Khang D, Kim HH, Kim CJ, Biochem. Eng. J., 112, 20 (2016)
  19. Fu L, Yu AM, Rev. Adv. Mater. Sci., 36, 40 (2014)
  20. Aziz MA, Yang H, Bull. Korean Chem. Soc., 28, 1171 (2007)
  21. Choi CH, Margraves CH, Jun SI, English AE, Rack PD, Kihm KD, Sensors, 8, 3257 (2008)
  22. Kalaskar DM, Demoustier-Champagne S, Dupont-Gillain CC, Colloids Surf. B: Biointerfaces, 111, 134 (2013)
  23. Aziz MA, Park S, Jon S, Yang H, Chem. Commun., 2610 (2007).
  24. Geddes LA, Roeder R, Ann. Biomed. Eng., 31, 879 (2003)
  25. Exley C, Environ. Sci.: Process Impacts, 15, 1807 (2013)
  26. Peters R, Walshe JM, Proc. R. Soc. London B: Biol. Sci., 166, 273 (1966)
  27. Yeung SW, Lee TMH, Cai H, Hsing IM, Nucl. Acids Res., 34, e118 (2006)
  28. Gonzalez.-Arribas E, Bobrowski T, Bari CD, Sliozberg K, Ludwig R, Toscano MD, Lacey ALD, Pita M, Schuhmann W, Shleev S, Biosens. Bioelectron., 97, 46 (2017)
  29. Ayato Y, Sugimoto W, ECS Transact., 66, 29 (2015)
  30. Bobrowski T, Arribas EG, Ludwig R, Toscano MD, Shleev S, Schuhmann W, Biosens. Bioelectron., 101, 84 (2018)
  31. Pichardo S, Gutierrez-Praena D, Puerto M, Sanchez E, Grilo A, Camean AM, Jos A, Toxycol. in Vitro, 26, 672 (2012)
  32. Jos A, Pichardo S, Puerto M, Sanchez E, Grilo A, Camean AM, Toxycol. in Vitro, 23, 1419 (2009)
  33. Gregg BA, Heller A, J. Phys. Chem., 95, 5970 (1991)
  34. Kim HH, Mano N, Zhang XC, Heller A, J. Electrochem. Soc., 150(2), A209 (2003)
  35. Timur S, Haghighi B, Tkac J, Pazarhoglu N, Telefoncu A, Gorton L, Bioelectrochem., 71, 38 (2007)
  36. Kenausis G, Taylor C, Katakis I, Heller A, J. Chem. Soc.-Faraday Trans., 92, 4131 (1996)
  37. Jeon WY, Choi YB, Kim HH, Sensors, 15, 31083 (2015)
  38. Aziz MA, Jo K, Lee JA, Akanda MRH, Sung D, Jon S, Yang Y, Electroanal., 22, 2615 (2010)
  39. Attal S, Thiruvengadathan R, Regev O, Anal. Chem., 78, 8098 (2006)
  40. Wen H, Nallathambi V, Chakraborty D, Barton SC, Microchim Acta., 175, 283 (2011)
  41. Paredes JI, Burghard M, Langmuir, 20(12), 5149 (2004)
  42. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A, Phys. Rep., 409, 47 (2005)
  43. Lin J, He C, Zhao Y, Zhang S, Actuators B, 137, 768 (2009)
  44. Dhand C, Arya SK, Singh SP, Singh BP, Datta M, Malhotra BD, Carbon, 46, 1727 (2008)
  45. Sone K, Yagi M, Electroanalysis, 21, 144 (2009)
  46. Cao H, Zhu Y, Tang L, Yang X, Li C, Electroanalysis, 20, 2223 (2008)
  47. Ganesh V, Maheswari DL, Berchmans S, Electrochim. Acta, 56(3), 1197 (2011)
  48. Zhao HZ, Sun JJ, Song J, Yang QZ, Carbon, 48, 1508 (2010)
  49. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH, Anal. Bioanal. Chem., 396, 1003 (2010)
  50. Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W, J. Nanopart. Res., 9, 1205 (2007)
  51. Ivnitski D, artyushkova K, Rincon RA, Atanassov P, Luckarift HR, Johnson GR, Small, 4, 357 (2008)
  52. Verma ML, Naebe M, Barrow CJ, Puri M, Plos One, 8, e73642 (2013)
  53. Hernandez-Cancel G, Suazo-Davila D, Ojeda-Cruzado AJ, Garcia-Torres D, Cabrera CR, Griebenow K, J. Nanotechnol., 13, 70 (2015)
  54. Joseph Y, Besnard I, Rosenberger M, Guse B, Nothofer HG, Wessels JM, Wild U, Knop-Gericke A, Su DS, Schlogl R, Yasuda A, Vossmeyer T, J. Phys. Chem. B, 107(30), 7406 (2003)
  55. Fayazfar H, Afshar A, Dolati M, Dolati A, Anal. Chim. Acta, 836, 34 (2014)
  56. Li X, Zhao X, Wang MS, Zhang KJ, Huang Y, Qu MZ, Yu ZL, Geng DS, Zhao WG, Zheng JM, RSC Adv., 7, 24359 (2017)
  57. Ezhilvilian AT, Veeramani V, Chen SM, Madhu R, Kwak CH, Huh YS, Han YK, Sci. Rep., 5, 18390 (2015)
  58. Chen X, Yan X, Khor KA, Tay BK, Biosens. Bioelectron., 22, 3256 (2007)
  59. Zhao H, Ju H, Anal. Biochem., 350, 138 (2006)
  60. Nakamura S, Hayashi S, Koga K, Biochim. Biophys. Acta., 445, 294 (1976)
  61. Mutlu S, Mutlu M, Piskin E, Biochem. Eng. J., 1, 39 (1998)
  62. Wu CS, Wu CT, Yang YS, Ko FH, Chem. Commun., 5327 (2008).
  63. Deka J, Pau A, Chattopadhyay A, RSC Adv., 2, 4736 (2012)
  64. Papa H, Gaillard M, Gonzalez L, Chatterjee J, Biosensors, 4, 449 (2014)
  65. Thibault S, Aubriet H, Arnoult C, Microchim. Acta, 163, 211 (2008)
  66. Sakr OS, Borchard G, Biomolecules, 14, 2117 (2013)
  67. de la Escosura-Muniz A, Parolo C, Marian F, Mekoci A, Nanoscale, 3, 3350 (2011)
  68. Zhang H, Lu HY, Hu NF, J. Phys. Chem. B, 110(5), 2171 (2006)
  69. Tasca F, Farias D, Castro C, Acuna-Rougier C, Antiochia R, Plos One, 10, e01321 (2015)
  70. Kannan P, Chen H, Lee VT, Kim DH, Talanta, 86, 400 (2011)
  71. Wu Y, Feng X, Zhou S, Shi H, Wu H, Zhao S, Song W, Microchim. Acta, 180, 1325 (2013)