화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.7, 1115-1123, July, 2019
Thermodynamic and kinetic studies sorption of 5-fluorouracil onto single walled carbon nanotubes modified by chitosan
E-mail:
Single-walled carbon nanotubes (SWCNTs) were functionalized by chitosan and their application was examined in adsorbing an anti-cancer drug, 5-fluorouracil (5Fu). Surface, physical and morphological characteristics of raw SWCNTs and Chitosan-functionalized SWCNTs (Ch-SWCNTs) were extensively characterized by Fourier transform spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) and X-ray diffraction (XRD). The effects of various variables such as pH, initial drug concentration, temperature, and contact time on adsorption capacity were also investigated. Thermodynamic parameters such as ΔSo, ΔHo, and ΔGo were estimated. Isotherm and kinetic studies of drug adsorption indicated that the adsorption process followed Langmuir isotherm model and pseudo-second-order kinetic, respectively. The maximum adsorption capacity (qm) of 5Fu on Ch-SWCNTs was 31.77mg g-1 at 298 K, pH 4.0, and 120 min, which is higher than adsorption capacity of SWCNTs (4.12mg g-1) in the same conditions. The adsorption was spontaneous and exothermic process in nature, with a slight decreasing in entropy.
  1. Nooreini MG, Panahi HA, Int. J. Pharm., 512, 178 (2016)
  2. Heydarinasab A, Panahi HA, Nematzadeh H, Moniri E, Nasrollahi S, Monastsh. Chem., 146, 411 (2015)
  3. Panahi HA, Nasrollahi S, Int. J. Pharm., 476, 70 (2014)
  4. Panahi HA, Tavanaei Y, Moniri E, Keshmirizadeh E, J. Chromatogr. A, 1345, 37 (2014)
  5. Panahi HA, Alaei H, Int. J. Pharm., 476, 178 (2014)
  6. Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M, Nanomed. Nanobiotechnol., 3, 11 (2011)
  7. Menard-Moyon C, Venturelli E, Fabbro C, Samori C. Da Ros T, Kostarelos K, Prato M, Bianco A, Expert Opin. Drug Discovery, 5, 691 (2010)
  8. Baughman RH, Zakhidov AA, de Heer WA, Science, 297, 787 (2002)
  9. Bianco A, Kostarelos K, Prato M, Curr. Opin. Chem. Biol., 9, 674 (2005)
  10. Liu P, Ind. Eng. Chem. Res., 52, 13517 (2013)
  11. Lim DJ, Sim M, Oh L, Lim K, Park H, Arch. Pharm. Res., 37, 43 (2014)
  12. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H, Mater. Trans., 14, 316 (2011)
  13. Khazaei A, Rad MNS, Borazjani MK, Int. J. Nanomed., 5, 639 (2010)
  14. Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, Dai HJ, Cancer Res., 68, 6652 (2008)
  15. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen XY, Yang QW, Felsher DW, Dai HJ, Angew. Chem.-Int. Edit., 48, 7668 (2009)
  16. Moazen MK, Panahi HA, J. Sep. Sci., 40(5), 1125 (2017)
  17. Fan W, Yan W, Xu Z, Ni H, Colloids Surf. B: Biointerfaces, 95, 258 (2012)
  18. dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, Higa OZ, Gil MH, Int. J. Pharm., 310, 37 (2006)
  19. Dadvar E, Kalantary RR, Panahi HA, Peyravi M, J. Chem., 2017, 1 (2017)
  20. Zhang XK, Meng LJ, Lu QH, Fei ZF, Dyson PJ, Biomaterials, 30, 6041 (2009)
  21. Li J, Sun H, Dai YD, Chin. Phys. Lett., 27, 38104 (2010)
  22. Zhan Y, Pan L, Nie C, Li, Li H, Sun Z, J. Alloy. Compd., 509, 5667 (2011)
  23. Amin NK, J. Hazard. Mater., 165(1-3), 52 (2009)
  24. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  25. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  26. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212 (1966)
  27. Namasivayam C, Jeyakumar R, Yamuna RT, Waste Manage., 14, 643 (1994)
  28. Naiya TK, Bhattacharya AK, Das SK, J. Colloid Interface Sci., 333(1), 14 (2009)
  29. Konicki W, Pelech I, Mijowska E, Jasinska I, Chem. Eng. J., 210, 87 (2012)