화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.7, 1090-1101, July, 2019
Kinetic effect and absorption performance of piperazine activator into aqueous solutions of 2-amino-2-methyl-1-propanol through post-combustion CO2 capture
E-mail:,
The current study investigates the absorption kinetics of carbon dioxide (CO2) released from power plant exhaust using activated mixture of 2-amino-2-methyl-1-propanol (AMP) upgraded by piperazine (PZ). An absorption experiment of (AMP+PZ+H2O) was conducted in a wetted wall column absorber with a temperature variation of 298- 313 K and CO2 partial pressure of 5-15 kPa. PZ is considered to be a rate promoter by adjustable mass proportion varying from 2 to 10 wt%, while the concentration of entire amine solution remained constant at 30 wt%. Based on the Zwitterions mechanism, an overall reaction pattern of (AMP+PZ+H2O) with CO2 was designed. Considering pseudofirst order reaction criteria, the kinetic rate factors and the overall second order rate constants were calculated. The overall rate constant (kOV) experienced a significant enhancement with a small addition of PZ into aqueous AMP solution. The observed second-order rate constants (k2, PZ) in this experimental study were 60,403, 81,925, 98,591 and 116,521m3ㆍkmol- 1ㆍs- 1 at 298, 303, 308 and 313 K correspondingly. The experimental specific rate of absorption into (AMP+PZ+H2O) in connection with the model anticipated rate was determined with deviation of around 4.86% average absolute deviation (AAD).
  1. Scripps Institution of Oceanography, University of California, San Diego. http://scripps.uscd.edu/programs/keeling curve (2018).
  2. Intergovernmental Panel on Climate Change (IPCC), 2001c.
  3. IEA, World Energy Outlook Special Report on Energy and Climate Change. International Energy Agency (IEA), 115 (2015).
  4. Rao A, Rubin B, Edward S, Environ. Sci. Technol., 36, 4467 (2002)
  5. Rochelle GT, Science, 325, 1652 (2009)
  6. Rangwala HA, Morrell BR, Mather AE, Otto FD, Can. J. Chem. Eng., 70, 482 (1992)
  7. Kohl A, Nielsen R, Gas Purification. 5th Ed., Gulf Publishing Co., Houston (1997).
  8. Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 39(11), 4346 (2000)
  9. deMontigny D, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 44(15), 5726 (2005)
  10. Osman K, Coquelet C, Ramjugernath D, J. Chem. Eng. Data, 57(5), 1607 (2012)
  11. Pacheco MA, Kaganoi S, Rochelle GT, Chem. Eng. Sci., 55(21), 5125 (2000)
  12. Zoghi AT, Feyzi F, Zarrinpashneh S, Int. J. Greenhouse. Gas Control, 7, 12 (2012)
  13. Rowland R, Yang Q, Jackson P, Attalla M, Energy Procedia, 4, 195 (2011)
  14. Lu JG, Cheng M, Ji Y, Hui Z, J. Fuel Chem. Technol., 37, 740 (2009)
  15. Huser N, Schmitz O, Kenig EY, Chem. Eng. Sci., 157, 221 (2017)
  16. Mumford KA, Wu Y, Smith KH, Stevens GW, Front. Chem. Sci. Eng., 9, 125 (2015)
  17. Liu YC, Fan WD, Wang K, Wang JC, J. Clean Prod., 112, 4012 (2016)
  18. El Hadri N, Quang DV, Goetheer ELV, Abu Zahra MRM, Appl. Energy, 185, 1433 (2017)
  19. Bishnoi S, Rochelle GT, AIChE J., 48(12), 2788 (2002)
  20. Sun WC, Yong CB, Li MH, Chem. Eng. Sci., 60(2), 503 (2005)
  21. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64(6), 1185 (2009)
  22. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239 (1983)
  23. Gordesli FP, Ume CS, Alper E, Int. J. Chem. Kinet., 45, 566 (2013)
  24. Ume CS, Ozturk MC, Alper E, Chem. Eng. Technol., 35(3), 464 (2012)
  25. Appl M, Wagner U, Henrici HJ, Kuessner K, Volkamer F, Ernst-Neust N, Removal of CO2 and/or H2 S and/or COS from gases containing these constituents, US Patent 4,336,233 (1982).
  26. Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS, Chem. Eng. Sci., 66(14), 3223 (2011)
  27. Khan AA, Halder GN, Saha AK, Int. J. Greenhouse. Gas Control, 44, 217 (2016)
  28. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531 (2000)
  29. Derks PWJ, Kleingeld T, van Aken C, Hogendoom JA, Versteeg GF, Chem. Eng. Sci., 61(20), 6837 (2006)
  30. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 62(24), 7312 (2007)
  31. Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
  32. Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
  33. Pinsent BRW, Pearson L, Roughton FWJ, Trans. Faraday Soc., 52, 1512 (1956)
  34. Kierzkowska-Pawlak H, Siemieniec M, Chacuk A, Chem. Process., 33, 7 (2012)
  35. Liao CH, Li MH, Chem. Eng. Sci., 57(21), 4569 (2002)
  36. Yih SM, Shen KP, Ind. Eng. Chem. Res., 27, 2237 (1988)
  37. Saha AK, Bandyopadhyay SS, Biswas AK, Chem. Eng. Sci., 50(22), 3587 (1995)
  38. Geankoplis CJ, Transport Processes and Separation Process Principles, 4th Ed., Prentice-Hall, Englewood Cliffs, NJ (2003).
  39. Clarke JKA, Ind. Eng. Chem. Fundam., 3, 239 (1964)
  40. Haimour N, Sandall OC, Chem. Eng. Sci., 39, 1791 (1984)
  41. AI-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC, J. Chem. Eng. Data, 34, 385 (1989)
  42. Xu S, Otto FD, Mather AE, J. Chem. Eng. Data, 36, 71 (1991)
  43. Haimour NM, J. Chem. Eng. Data, 35, 177 (1990)
  44. Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data, 38, 82 (1993)
  45. Laddha SS, Diaz JM, Danckwerts PV, Chem. Eng. Sci., 36, 228 (1981)
  46. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 33, 29 (1988)
  47. Doraiswamy LK, Sharma MM, Fluid-Fluid-Solid Reactions, Vol. 2, Wiley, New York (1984).
  48. Xu GW, Zhang CF, Qin SJ, Wang YW, Ind. Eng. Chem. Res., 31, 921 (1992)
  49. Seo DJ, Hong WH, Ind. Eng. Chem. Res., 39(6), 2062 (2000)
  50. Zhang X, Zhang CF, Qin SJ, Zheng ZS, Ind. Eng. Chem. Res., 40(17), 3785 (2001)