화학공학소재연구정보센터
Journal of Power Sources, Vol.424, 158-164, 2019
Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery
A versatile synthetic approach is demonstrated to fabricate vanadium pentoxide hierarchical structures with three-dimensional electron carriers as anode materials for lithium-ion battery. Such unique structures are favorable for providing easy access of electrolyte to the electrode during lithiation-delithiation process and also shortening the pathway of the ion and electron transport, which guarantee excellent electrochemical performance. As a consequence, high specific capacities of 960 mAh g(-1) at 200 mA g(-1) and 738 mAh g(-1) at 500 mA g(-1) after 300 cycles are achieved without obvious decay. More remarkably, it is essential to rebuild a new recycling process owing to the massive waste produced by dealing with spent lithium-ion battery. Therefore, an energy-saving and environment-friendly process is introduced to recycle the used V2O5 batteries. Through a facile annealing process, LiV3O8 is obtained and reused as sustainable anode materials for the first time. The recycled product LiV3O8 delivers excellent electrochemical performance, e.g., a high capacity of 542 mAh g(-1) at 200 rnA g(-1) and the coulombic efficiency of over 99% after 600 cycles. This finding not only promotes the development of vanadium oxides for lithium-ion battery, but also sheds light on searching potential protocol for metal ion battery recycling.