화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 297-302, June, 2019
열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석
Structural Analysis of Volatile Matters and Heavy Oil Fractions from Pyrolysis Fuel Oil by the Heat Treatment Temperature
E-mail:
초록
열분해 연료유(pyrolysis fuel oil)의 열처리 시 발생되는 구조변화를 파악하기 위하여 열처리 온도에 따라 발생되는 휘발유분(volatile matters) 및 중질유분을 분리하였다. 열처리 온도가 증가함에 따라 중질유분의 수율은 낮아지며, 탄화수율은 높아지는 것을 확인하였다. 휘발유분의 1H-NMR 구조분석 결과, 원료에 포함되어 있던 1~2환 방향족 성분들은 340 ℃ 이전의 온도에서 대부분 제거되었으며, 320 ℃부터는 크래킹 반응에 의하여 방향족 화합물로부터 지방족 탄화수소 곁사슬이 분해됨에 따라 새로운 휘발유분을 생성하는 것을 확인하였다. 한편 중질유분의 원소분석 및 1H-NMR 구조분석 결과로부터, 열처리 온도가 증가할수록 C/H 몰비 및 방향족화도 값이 증가함을 알 수 있었다. 이러한 구조분석 결과를 통하여 PFO의 280~360 ℃에서의 열처리에 따른 구조 변화는 비점 차이에 따른 휘발유분의 분리 및 크래킹 반응에 의한 지방족 곁사슬의 분해가 가장 큰 영향을 미치며, 일부 화학종 간 중합반응 또한 발생된 것을 확인하였다.
In order to investigate structural changes of the pyrolysis fuel oil (PFO), the volatile matters and heavy oil fractions were separated from PFO by heat treatment temperature. As a result of 1H-NMR analysis of volatile matters, 1~2 ring aromatic compounds contained in the petroleum residue were mostly removed at a temperature before 340 ℃. Moreover, new peaks corresponding to aliphatic hydrocarbons were detected at the chemical shift of 2.0~2.4 ppm. It is attributed that the aliphatic hydrocarbon sidechain was cracked from the aromatic compound by the cracking reaction occurred at 320 ℃. The C/H mole ratio and aromaticity increased with increasing the heat treatment temperature. Therefore, from the structural analysis results of heavy oil fractions and volatile matters from PFO, the decomposition of the aliphatic sidechain by cracking reaction and the separation of volatile matters by boiling point of components were mostly affected structure changes of the PFO.
  1. Kim KH, Park MS, Jung MJ, Lee YS, Appl. Chem. Eng., 26(5), 598 (2015)
  2. Park MS, Ko Y, Jung MJ, Lee YS, Carbon Lett., 16, 121 (2015)
  3. Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
  4. Kim KH, An DH, Kim JW, Lee YS, Appl. Chem. Eng., 29(6), 677 (2018)
  5. Kim JH, Kim DY, Lee YS, Carbon Lett., 21, 111 (2017)
  6. Kim JG, Kim JH, Bai BC, Choi YJ, Im JS, Bae TS, Lee YS, Carbon Lett., 28, 24 (2018)
  7. Srivastava M, Kumar M, Agrawal UC, Garg MO, Open Pet. Eng. J., 5, 14 (2012)
  8. Kim JG, Liu F, Lee CW, Lee YS, Im JS, Solid State Sci., 34, 38 (2014)
  9. Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25, 78 (2018)
  10. Kim JG, Kim JH, Song BJ, Lee CW, Lee YS, Im JS, Fuel, 186, 20 (2016)
  11. Cristadoro A, Kulkarni SU, Burgess WA, Cervo EG, Rader HJ, Mullen K, Bruce DA, Thies MC, Carbon, 47, 2358 (2009)
  12. Ghashghaee M, J. Anal. Appl. Pyrolysis, 115, 326 (2015)
  13. Alvarez P, Diez N, Blanco C, Santamaria R, Menendez R, Granda M, Fuel, 105, 471 (2013)
  14. Cheng Y, Fang C, Su J, Yu R, Li T, J. Anal. Appl. Pyrolysis, 109, 90 (2014)
  15. Kim DY, Kim JH, Lee HI, Lee YS, Appl. Chem. Eng., 27(5), 537 (2016)
  16. Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS, Korean J. Chem. Eng., 33, 551 (1995)
  17. Jung JY, Park MS, Kim MI, Lee YS, Carbon Lett., 15, 262 (2014)
  18. Kim KH, Lee SM, An DH, Lee YS, Appl. Chem. Eng., 28(4), 432 (2017)
  19. Jung MJ, Ko Y, Lee YS, Appl. Chem. Eng., 26(2), 224 (2015)
  20. Jung MJ, Jung JY, Lee D, Lee YS, J. Ind. Eng. Chem., 22, 70 (2015)
  21. Seo SW, Kim JH, Lee YS, Im JS, Appl. Chem. Eng., 29(6), 652 (2018)
  22. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176 (2018)
  23. Jung JY, Lee YS, Carbon Lett., 15, 129 (2014)
  24. Kim JG, Kim JH, Song BJ, Jeon YP, Lee CW, Lee YS, Im JS, Fuel, 167, 25 (2016)
  25. Jo H, Jung MJ, Lee HI, Lee YS, Trans. Korean Hydrogen New Energy Soc., 27, 421 (2016)
  26. Zhu Y, Zhao X, Gao L, Cheng J, Carbon Lett., 28, 38 (2018)
  27. Silva SL, Silva AMS, Ribeiro JC, Martins FG, Silva FAD, Silva CM, Anal. Chim. Acta, 707, 18 (2011)
  28. Mayani VJ, Mayani SV, Lee Y, Park SK, Sep. Purif. Technol., 80(1), 90 (2011)