화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.3, 378-386, June, 2019
용존 이온 농축을 위한 진공 증발 기술과 하이드레이트 기반 기술의 소모 에너지 비교
Comparison on the Energy Consumption of the Vacuum Evaporation and Hydrated-Based Technologies for Concentrating Dissolved Ions
E-mail:
초록
이 논문에서는 염수 중 이온 농축을 위해 진공 증발법과 하이드레이트 활용법 적용시 소모 에너지를 계산 결과를 보고하고자 한다. 상온 상압의 염수(NaCl 농도 0.35 wt%) 1 mol/s 를 10배 농축할 경우를 가정하여 69 °C, 30 kPa 조건에서 진공 증발시와 객체가스로 CH4, CO2, SF6 를 사용한 하이드레이트 기반 기술의 에너지 소모량을 계산하였다. 진공 증발시 소모 에너지는 약 47 kJ/mol 이었으며, CH4, CO2, SF6 하이드레이트 공정을 적용할 경우에는 각각 43, 32, 28 kJ/mol의 에너지가 필요하였다. 에너지 소모량 관점에서 이온 농축시 하이드레이트 활용방법은 경쟁력있는 기술이 될 수 있으나, 객체가스에 따라 수화수(hydration number), 수화에너지, 압축에너지 등이 달라지므로 적절한 객체가스의 선정이 매우 중요한 요소라고 판단된다. 하이드레이트를 이용한 용존 이온 농축 기술의 상용화를 위한 핵심 요소로는 객체가스의 선정, 하이드레이트와 농축수의 효과적 분리, 하이드레이트 형성 속도 향상을 들 수 있다.
In the present paper we report the calculation results of operation energy consumption for dissolved ions concentration technologies using vacuum evaporation (VE) and hydrate formation. Calculations were conducted assuming the tenfold concentration of saline water (0.35 wt% NaCl solution) of 1 mol/s at room temperature and atmospheric pressure employing vacuum evaporation at 69 °C and 30 kPa and hydrate-based concentration using CH4, CO2 and SF6 as guest molecules. Operation energy consumption of VE-based concentration resulted in 47 kJ/mol, whereas those of hydrate-based concentration were 43, 32, and 28 kJ/mol for CH4, CO2 and SF6 hydrates, respectively. We observe that hydrate-based concentration can a competitive option for dissolved ions recovery from energy consumption standpoint. However, the selection of guest gas is very critical, since it accordingly determines the hydration number, the hydrate formation energy, gas compression energy, etc. The selection of guest gas, separation of concentrated brine and water phases, and the enhancement of hydrate formation rate are the key factors for the commercialization of hydrated-based technology for concentrating dissolved ions.
  1. Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD, Desalination, 274(1-3), 91 (2011)
  2. Lee JD, Kang JC, Trans. Korean Soc. Mech. Eng. B, 38(5), 407 (2013)
  3. Kang KC, Linga P, Park KN, Choi SJ, Lee JD, Desalination, 353, 84 (2014)
  4. Saw VK, Ahmad I, mandal A, Udayabhanu G, Laik S, J. Nat. Gas Chem., 1, 1218 (2013)
  5. Cha JH, Seol Y, Sust. Chem. Eng., 1008-1028(2010).
  6. Javanmardi J, Moshfeghian M, Appl. Them. Eng., 23, 845 (2003)
  7. Pfeiffer Vacuum, http://www.igg.cas.cn/jgsz/zcxt/sygcxt/ggsys/djsdlztzp/201010/P020140311808313164612.pdf, accessed on Nov. 27, 2017.
  8. Sloan ED, Koh CA, “Clathrate Hydrates of Natural Gases,” 3rd Ed., Taylor & Francis Group, LLC (2008).
  9. Ning FL, Glavatskiy K, Ji Z, Kjelstrup S, Vlugt TJH, Phys. Chem. Chem. Phys., 17, 2868 (2015)
  10. http://saturnec.com/images/bin/imagenews/1450431572_alfalaval-screw-press.pdf.
  11. Chejara A, Kvamme B, Vafaei MT, Jemai K, Energy Conv. Manag., 68, 313 (2013)
  12. Maekawa T, Itoh S, Sakata S, Igari SI, Imai N, Geocheical Journal, 29, 325 (1995)
  13. Dickens GR, Quinby-Hunt MS, Geophysical Research Letters,, 21(19), 2115 (1994)
  14. Cha I, Lee S, Lee JD, Lee GW, Seo Y, Environ. Sci. Technol., 44, 6117 (2010)
  15. Seo Y, Moon D, Lee C, Park JW, Kim BS, Lee GW, Dotel P, Lee JW, Cha M, Yoon JH, Environ. Sci. Technol., 49, 6045 (2015)
  16. Qi YX, Wu WD, Liu YF, Xie YM, Chen X, Fluid Phase Equilib., 325, 6 (2012)
  17. Tung YT, Chen LJ, Chen YP, Lin ST, J. Phys. Chem. B, 116(48), 14115 (2012)
  18. Lirio CFS, Pessoa FLP, Chem. Eng. Trans., 32, 577 (2013)
  19. Lee Y, Lee S, Lee J, Seo Y, Chem. Eng. J., 246, 20 (2014)
  20. DMT, http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf, accessed on Feb. 24, 2019.
  21. https://www.ohio.edu/mechanical/thermo/property_tables/gas/Zfactor.html, accessed on Feb. 24, 2019.
  22. Bradshaw RW, Greathouse JA, Cygan RT, Simmons BA, Dedrick DE, Majzoub EH, “Desalination Utilizing Clathrate Hydrates(LDRD Final Report),” Sandia Report, SAND2007-6565(2008).
  23. Vijayamohan P, Majid A, Chaudhari P, Sum AK, Koh CA, OTC-25661-MS, Offshore Technology Conference, May 4-7, Houston, Texas, U.S.A. (2015).
  24. Ding L, Shi BH, Wang JQ, Liu Y, Lv XF, Wu HH, Wang W, Lou X, Gong J, Energy Fuels, 31(9), 8865 (2017)
  25. KITECH, https://www.kitech.re.kr/research/page3-5-2-2.php, accessed on Nov.25, 2018.