화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.4, 427-434, April, 2019
Poly(3-hexylthiophene) Nanoparticles Prepared via a Film Shattering Process and Hybridization with TiO2 for Visible-Light Active Photocatalysis
E-mail:
We present a methodology to prepare a hybrid photocatalyst based on conjugated polymer nanoparticles (CPNs) by electrostatically adsorbing TiO2 nanoparticles on the surfaces of the CPNs to achieve synergetic effects of efficient light-harvesting by CPNs and photocatalysis by TiO2 nanoparticles by taking advantages of the energy transfer from the CPNs to TiO2. Positive surface charges on CPNs were introduced by adding a portion of cationic amphiphile during the preparation of CPNs using poly(3-hexylthiophene) and a phospholipid via a phase-separated film shattering process. Then, anionic TiO2 nanoparticles were synthesized and adsorbed on the positively charged surfaces of CPNs by electrostatic attraction. The resulting hybrid nanoparticles showed efficient visible-light active photocatalysis which was confirmed by the degradation of methylene blue with visible-light irradiation.
  1. Park JH, J. Ind. Eng. Chem., 51, 27 (2017)
  2. Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
  3. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M, Nat. Mater., 8(1), 76 (2009)
  4. Dai CH, Xu SD, Liu W, Gong XZ, Panahandeh-Fard M, Liu ZT, Zhang DQ, Xue C, Loh KP, Liu B, Small, 14, 180183 (2018)
  5. Ojha DP, Karki HP, Kim HJ, J. Ind. Eng. Chem., 61, 87 (2018)
  6. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  7. Su YW, Lin WH, Hsu YJ, Wei KH, Small, 10, 4427 (2014)
  8. Koster LJA, Mihailetchi VD, Blom PWM, Appl. Phys. Lett., 88, 093511 (2006)
  9. Xu T, Qiao Q, Energy Environ. Sci., 4, 2700 (2011)
  10. Wang DS, Zhang J, Luo QZ, Li XY, Duan YD, An J, J. Hazard. Mater., 169(1-3), 546 (2009)
  11. Zhu YF, Dan Y, Sol. Energy Mater. Sol. Cells, 94(10), 1658 (2010)
  12. Zhang J, Yang H, Xu S, Yang L, Song Y, Jiang L, Dan Y, Appl. Catal. B: Environ., 174-175, 193 (2015)
  13. Yoon J, Kwag J, Shin TJ, Park J, Lee YM, Lee Y, Park J, Heo J, Joo C, Park TJ, Yoo PJ, Kim S, Park J, Adv. Mater., 26(26), 4559 (2014)
  14. Choi YK, Lee D, Lee SY, Shin TJ, Park J, Ahn DJ, Macromolecules, 50(17), 6935 (2017)
  15. Krogman KC, Zacharia NS, Grillo DM, Hammond PT, Chem. Mater., 20, 1924 (2008)
  16. Kim YJ, Jung HT, Ahn CW, Jeon HJ, Adv. Mater. Interfaces, 4, 170034 (2017)
  17. Bae N, Park HE, Yoo PJ, Shin TJ, Park JH, J. Ind. Eng. Chem., 51, 172 (2017)
  18. Lee DB, Shin TJ, Yoo PJ, Oh KW, Park JH, J. Ind. Eng. Chem., 63, 33 (2018)
  19. Noh J, Jung S, Koo DG, Kim G, Choi KS, Park J, Shin TJ, Yang C, Park J, Sci. Rep., 8, 14448 (2018)
  20. Zang L, Che Y, Moore JS, Accounts Chem. Res., 41, 1596 (2008)
  21. Verploegen E, Mondal R, Bettinger CJ, Sok S, Toney MF, Bao ZA, Adv. Funct. Mater., 20(20), 3519 (2010)
  22. Rughooputh SDDV, Hotta S, Heeger AJ, Wudl F, J. Polym. Sci. Polym. Phys., 25, 1071 (1987)
  23. Li YW, Chen YJ, Liu X, Wang Z, Yang XM, Tu YF, Zhu XL, Macromolecules, 44(16), 6370 (2011)
  24. Peet J, Brocker E, Xu YH, Bazan GC, Adv. Mater., 20(10), 1882 (2008)
  25. Lee Y, Yang I, Lee JE, Hwang S, Lee JW, Um SS, Nguyen TL, Yoo PJ, Woo HY, Park J, Kim SK, J. Phys. Chem. C, 117, 3298 (2013)
  26. Garner LE, Park J, Dyar SM, Chworos A, Sumner JJ, Bazan GC, J. Am. Chem. Soc., 132(29), 10042 (2010)