화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.4, 377-385, April, 2019
Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe
E-mail:
Carbohydrate-binding modules (CBMs) have been developed to investigate the presence of crystalline and amorphous regions of cellulose. However, systematic and quantitative assessment of cellulose crystallinity using such non-hydrolytic fusion proteins in liquid phase has not been reported. In this work, cellulose directed CBM probes containing a green fluorescent protein (GFP) were constructed and named CG17, CG28, and CG2a. The probe binding condition was determined as incubating 30 μg/mL probes in 10 mM phosphate buffer at 30 oC for 60 min. Under the optimized condition, the linear correlations between CBM probe binding capability and X-ray diffraction (XRD) crystallinity were well established. Using linear regression equations, the crystallinity of several cellulosic materials was well calculated. Amorphous component and cellulosic surface area probably had a less effect on binding capability of CG2a than that of CG17 and CG28. Therefore, crystalline-region specific probe CG2a should be an efficient tool for interpreting the crystallinity of cellulosic materials.
  1. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK, Bioresour. Technol., 128, 751 (2013)
  2. Ling Z, Chen S, Zhang X, Xu F, Bioresour. Technol., 224, 611 (2017)
  3. Lynd LR, Weimer PJ, Zyl WH, Pretorius IS, Microbiol. Mol. Biol. Rev., 66, 506 (2002)
  4. Zhang YHP, Energy Sci. Eng., 1, 25 (2013)
  5. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS, FEBS J., 277, 1571 (2010)
  6. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS, Bioresour. Technol., 101(12), 4461 (2010)
  7. Hu WG, Schmidt-Rohr K, Polymer, 41(8), 2979 (2000)
  8. Rambo MKD, Ferreira MMC, J. Braz. Chem. Soc., 26, 612 (2015)
  9. Kennedy JK, Pons RJS, Carbohydr. Polym., 26, 313 (1995)
  10. Zhang L, Lu Z, Velarde L, Fu L, Pu Y, Ding SY, Ragauskas AJ, Wang HF, Yang B, Cellulose, 22, 1469 (2015)
  11. Schenzel K, Fischer S, Brendler E, Cellulose, 12, 223 (2005)
  12. Zerhusen NK, Tubilla BC, Wilson DB, Cellulose, 25, 4 (2017)
  13. Lee CM, Chen X, Weiss PA, Jensen L, Kim SH, J. Phys. Chem. Lett., 8, 1 (2017)
  14. Ahvenainen P, Kontro I, Svedstrom K, Cellulose, 23, 2 (2016)
  15. Caliari IP, Barbosa MH, Ferreira SO, Teofilo RF, Carbohydr. Polym., 158 (2017)
  16. Sathitsuksanoh N, Zhu ZG, Wi S, Zhang YHP, Biotechnol. Bioeng., 108(3), 521 (2011)
  17. Wang QQ, He Z, Zhu Z, Zhang YHP, Ni Y, Luo XL, Zhu JY, Biotechnol. Bioeng., 109(2), 381 (2012)
  18. Li TQ, Appl. Spectrosc. Rev., 50, 1512 (1996)
  19. Gao SH, You C, Renneckar S, Jie B, Zhang YHP, Biotechnol. Biofuels., 7, 24 (2014)
  20. Araki Y, Karita S, Tanaka A, ondo M, Goto M, Biotechnol. Biochem., 73, 1028 (2009)
  21. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ, Biochem. J., 382, 769 (2004)
  22. Hashimoto H, Cell. Mol. Life Sci., 63, 2954 (2006)
  23. McLean BW, Boraston AB, Brouwer D, Sanaie N, Fyfe CA, Warren RA, Kilburn DG, Haynes CA, J. Biol. Chem., 277, 50245 (2002)
  24. Mccartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ, Knox JP, Proc. Natl. Acad. Sci. U.S.A., 103, 4765 (2006)
  25. Bommarius AS, Katona A, Cheben SE, Patel AS, Ragauskas AJ, Knudson K, Pu Y, Metab. Eng., 10, 370 (2008)
  26. Hook BA, Halfar J, Bollmann J, Gedalof Z, Rahman MA, Reyes J, Schulze DJ, Chem. Geol., 405, 19 (2015)
  27. Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH, in Polymer Science, Vol. 271, pp 115-131 2015.
  28. Zhang YHP, Cui JB, Lynd LR, Kuang LR, Biomacromolecules, 7(2), 644 (2006)
  29. Schoeck J, Davies RJ, Martel A, Riekel C, Biomacromolecules, 8(2), 602 (2007)
  30. Wada M, Ike M, Tokuyasu K, Polym. Degrad. Stabil., 95, 543 (2010)
  31. Ago M, Endo T, Hirotsu T, Cellulose, 11, 163 (2004)
  32. Xu H, Yu G, Mu X, Zhang C, Deroussel P, Liu C, Li B, Wang H, Ind. Crop. Prod., 76, 638 (2015)
  33. Reyesortiz V, Heins RA, Cheng G, Kim EY, Vernon BC, Elandt RB, Adams PD, Sale KL, Hadi MZ, Simmons BA, Biotechnol. Biofuels, 6, 93 (2013)
  34. van den Ent F, Lowe J, Polym. Degrad. Stabil., 67, 67 (2006)
  35. Crowe J, Dobeli H, Gentz R, Hochuli E, Stiiber D, Henco K, Methods Mol. Biol., 31, 371 (1994)
  36. Segal LC, Creely J, Martin AEJ, Conrad CM, Text. Res. J., 29, 786 (1959)
  37. Kawakubo T, Karita S, Araki Y, Watanabe S, Oyadomari M, Takada R, Tanaka F, Abe K, Watanabe T, Honda Y, Watanabe T, Biotechnol. Bioeng., 105(3), 499 (2010)
  38. Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG, Biotechnol. Biofuels, 8, 220 (2015)
  39. Kljun A, Benians TAS, Goubet F, Meulewaeter F, Knox JP, Blackburn RS, Biomacromolecules, 12(11), 4121 (2011)
  40. Hong J, Ye XH, Zhang YHP, Langmuir, 23(25), 12535 (2007)
  41. Rollin JA, Zhu ZG, Sathitsuksanoh N, Zhang YHP, Biotechnol. Bioeng., 108(1), 22 (2011)
  42. Liao H, Zhang XZ, Rollin JA, Zhang YH, Biotechnol. J., 6, 1409 (2011)
  43. Mittal A, Rui K, Himmel ME, Johnson DK, Biotechnol. Biofuels, 4, 41 (2011)
  44. Mansfield SD, Mooney C, Saddler JN, Biotechnol. Prog., 15(5), 804 (1999)
  45. Mcintosh S, Vancov T, Biomass Bioenergy, 35, 3094 (2011)
  46. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1 (2002)
  47. Park SY, Baker JO, Himmel ME, Parilla PA, Johnson DK, Biotechnol. Biofuels, 3, 10 (2010)
  48. Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Eng. Chem. Res., 48, 3713 (2009)
  49. Antonopoulou G, Dimitrellos G, Beobide AS, Vayenas D, Lyberatos G, Waste Biomass Valorization, 6, 733 (2015)
  50. Stone JE, Adv. Chem., 15, 219 (1969)