화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.2, 244-252, April, 2019
슬러리상 수첨분해 반응에서 아로마틱 유분 첨가에 따른 코크 저감 및 아스팔텐 전환 특성
Effect of Aromatic Additives on the Coke Reduction and the Asphaltene Conversion in a Slurry-phase Hydrocracking
E-mail:,
초록
본 연구에서는 감압잔사유를 원료로 몰리브덴 계열 분산촉매와 수소를 첨가한 슬러리상 수첨분해 반응(반응온도 425 °C, 초기 80 °C 수소압력 80 bar, 반응시간 4시간, 촉매농도 500 ppm)에 아로마틱 성분을 포함하며 각기 다른 쌍극자 모멘트를 가지는 Toluene, FCC Light Cycle Oil (LCO), Resin을 반응 초기 및 중간에 첨가하여 이때의 코크 저감효과와 아스팔텐 반응특성 변화를 살펴보았다. 실험 결과 아로마틱 유분을 첨가한 경우 코크 저감효과는 모두 유사했던 반면, 상대적으로 쌍극자 모멘트가 큰 LCO와 Resin을 첨가한 경우 아스팔텐이 가스와 말텐 성분으로 더 전환되었음을 확인하였다. 또한 반응 중간에 아로마틱 유분을 첨가한 결과 코크 저감능력에서 차이를 보이지 않았으나, LCO를 반응 2시간 지점에 첨가한 경우 오히려 코크 수율이 증가하였고 오일상 내 아스팔텐의 aromaticity 가 증가하여 상대적으로 분산되기 어려운 구조로 존재함을 알 수 있었다.
This study investigated the effect of addition of aromatics such as Toluene/LCO/resin on the coke depression and asphaltene conversion. The experiment was carried out with vacuum residue as a feedstock with Molybdenum dispersed catalysts under the slurry-phase hydrocracking condition (Temp. of 425 °C, H2 pressure of 80 bar at 80 °C, reaction time of 4 hr, Mo-concentration of 500 ppm). As results, the coke reduction was shown to be similar irrespective of types of aromatics, while asphaltene was more converted to gas and maltene when LCO and resin with higher dipole moment were added. The addition of aromatics with change of reaction time showed no difference in terms of depression of coke formation. But the addition of LCO rather increased the coke yield after 2 hr. And it was found that asphaltene in liquid phase had the higher aromaticity index so that asphaltene is difficult to disperse in oil phase.
  1. Caniaz RO, Erkey C, Chem. Eng. Res. Des., 92(10), 1845 (2014)
  2. Bellussi G, Rispoli G, Landoni A, Millini R, Molinari D, Montanari E, Moscotti D, Pollesel P, J. Catal., 308, 189 (2013)
  3. Marafi M, Al-Barood A, Stanislaus A, Petroleum Science Technology, 23(7-8), 899 (2005)
  4. Deng WA, Luo H, Gao JJ, Que GH, Energy Fuels, 25(11), 5360 (2011)
  5. Son H, et al., Korean J. Chem. Eng., 28/(11), 2163 (2011)
  6. Bannayan MA, Lemke HK, Kirk Stephenson W, Editors. Elsevier. p. 273-281 1996,
  7. Bahrami P, Kharrat R, Mahdavi S, Ahmadi Y, James L, Korean J. Chem. Eng., 32(2), 316 (2015)
  8. Garcia FO, Mar-Juarez E, Hernandez PS, Energy Fuels, 26(5), 2948 (2012)
  9. Viet TT, Lee JH, Ryu JW, Ahn IS, Lee CH, Fuel, 94(1), 556 (2012)
  10. Liu YJ, Li ZF, J. Chem., 2015 (2015).
  11. Goual L, Firoozabadi A, AIChE J., 50(2), 470 (2004)
  12. Pereira JC, Lopez I, Salas R, Silva F, Fernandez C, Urbina C, Lopez JC, Energy Fuels, 21(3), 1317 (2007)
  13. Rahimi PM, et al., Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 49(2), 545(2004).
  14. Goual L, Firoozabadi A, AIChE J., 48(11), 2646 (2002)
  15. Al-Sahhaf TA, Fahim MA, Elkilani AS, Fluid Phase Equilib., 194, 1045 (2002)
  16. International A, ASTM D4124-01. Standard Test Methods for Separation of Asphalt into Four Fractions, Annual Book of ASTM Standards, 2001.
  17. Altgelt KH, Composition and Analysis of Heavy Petroleum fractions, 2016: CRC Press.
  18. Standards ABOA, Standard Test Method for Measuring n-Heptane Induced Phase Separation of Asphaltene-Containing Heavy Fuel Oils as Separability Number by an Optical Scanning Device. 2012. D7061-12.
  19. Guggenheim EA, Transactions of the Faraday Society, 45, 714-720(1949).
  20. Smith J, Transactions of the Faraday Society, 46, 394-399(1950).
  21. Wandas R, Pet. Sci. Technol., 25(1-2), 153 (2007)
  22. Diehl P, Kellerhals H, Niederberger W, J. Magn. Reson., 4(3), 352 (1971)
  23. Tanaka R, Hunt JE, Winans RE, Thiyagarajan P, Sato S, Takanohashi T, Energy Fuels, 17(1), 127 (2003)
  24. Ancheyta J, Trejo F, Rana MS, “Asphaltenes: Chemical Transformation During Hydroprocessing of Heavy Oils,” 2010: CRC press.
  25. Ancheyta J, Centeno G, Trejo F, Marroquin G, Energy Fuels, 17(5), 1233 (2003)