화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.2, 205-209, April, 2019
재조합단백질 GRP_BA 및 GG1234를 이용한, 상온상압조건에서의 In vitro 탄산칼슘 결정화
In vitro CaCO3 Crystallization at Room Temperature and Atmospheric Pressure Using Recombinant Proteins GRP_BA and GG1234
E-mail:
초록
바이오미네랄의 독특한 구조 및 생물학적 물성은 다양한 의료 및 산업용 분야에서 활용할 수 있는 뛰어난 잠재력을 지니고 있어 최근 관심이 증대되고 있다. 껍질 메트릭스 단백질에 의해 조절되는 탄산칼슘 생광물화는 이러한 바이오 미네랄의 생성 메커니즘을 이해하기 위한 대표적인 모델로 활용되고 있다. 본 연구에서는 진주조개 프리즘층에 존재 하는 껍질 메트릭스 단백질인 GRP_BA 재조합단백질과 껍질 메트릭스 단백질의 특성과 유사한 인공단백질 GG1234를 이용하여, 상온상압 조건에서 in vitro 탄산칼슘 결정화를 진행하였다. 대표적인 탄산칼슘 결정화 방법인 CaCl2 용액과 (NH4)2CO3 증기를 활용하였을 때, 두 단백질 모두 상온상압 조건에서 전형적인 능면체의 방해석 결정 성장을 저해하였고, 하위단위의 작은 방해석 결정이 뭉쳐진 장미모양리본 형태의 구형 방해석 성장을 유도하였다. 이러한 실험결과는 두 단백질에서 나타나는 블록으로 구성된 무정형 단백질의 특성에 의해 야기된 것으로 추정되며, 이러한 측면에서 본 연구는 껍질 메트릭스 단백질에 의해 조절되는 탄산칼슘 생광물화 현상의 이해를 높이는 데 기여할 것으로 판단된다.
The exquisite structure and attractive biological properties of biominerals have great potential and increased interest for use in a wide range of medical and industrial applications. Calcium carbonate biomineralization, mainly controlled by shell matrix proteins, has been used as a representative model to understand the biomineralization mechanism. In this study, in vitro calcium carbonate crystallization was carried out under room temperature and atmospheric pressure using recombinant shell matrix protein GRP_BA and artificial shell matrix protein GG1234. Both proteins inhibited the growth of typical rhombohedral calcite crystals in the calcium carbonate crystallization using CaCl2 solution and (NH4)2CO3 vapor, and spherulitic calcite crystals with rosette-like structures were synthesized in both the presence of GRP_BA and GG1234. These results might be caused by the properties of block-like domain structure and intrinsically disordered proteins. We expect that this study can contribute to enhance understanding of the calcium carbonate biomineralization controlled by shell matrix proteins.
  1. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO, Nat. Mater., 14(1), 23 (2015)
  2. Marin F, Luquet G, Marie B, Medakovic D, Curr. Top. Dev. Biol., 80, 209 (2008)
  3. Sun JY, Bhushan B, Rsc. Adv., 2, 7617 (2012)
  4. Janairo JIB, Co F, Carandang JS, Amalin DM, Z. Naturforsch C., 70, 191 (2015)
  5. Bahn SY, Jo BH, Choi YS, Cha HJ, Sci. Adv., 3, e17007 (2017)
  6. Bahn SY, Jo BH, Hwang BH, Choi YS, Cha HJ, Cryst. Growth Des., 15, 3666 (2015)
  7. Son C, Kim SY, Bahn SY, Cha HJ, Choi YS, Rsc. Adv., 7, 15302 (2017)
  8. Song W, Bahn SY, Cha HJ, Pack SP, Choi YS, Biotechnol. Lett., 38(5), 809 (2016)
  9. Jiang Y, Gong HF, Grzywa M, Volkmer D, Gower L, Colfen H, Adv. Funct. Mater., 23(12), 1547 (2013)
  10. Ren DN, Feng QL, Bourrat X, Micron, 42, 228 (2011)
  11. Son C, Song W, Hwang DS, Hong YK, Joo J, Choi YS, Korean J. Chem. Eng., 33(8), 2406 (2016)
  12. Gower LB, Odom DJ, J. Cryst. Growth, 210(4), 719 (2000)
  13. Jiang Y, Gower L, Volkmer D, Colfen H, Phys. Chem. Chem. Phys., 14, 914 (2012)
  14. Li W, Wu PY, Crystengcomm., 11, 2466 (2009)
  15. Zhong C, Chu CC, Cryst. Growth Des., 10, 5043 (2010)
  16. Picker A, Kellermeier M, Seto J, Gebauer D, Colfen H, Z. Kristallogr, 227, 744 (2012)
  17. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, Whitelam S, Banfield JF, De Yoreo JJ, Science, 341(6148), 885 (2013)
  18. De Yoreo JJ, Gilbert PU, Sommerdijk NA, Penn RL, Whitelam S, Joester D, et al., Science, 349, aaa676 (2015)
  19. Butler MF, Glaser N, Weaver AC, Kirkland M, Heppenstall-Butler M, Cryst. Growth Des., 6, 781 (2006)
  20. Yu SH, Colfen H, Hartmann J, Antonietti M, Adv. Funct. Mater., 12(8), 541 (2002)