화학공학소재연구정보센터
Materials Research Bulletin, Vol.112, 251-260, 2019
UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au)
In this work, ZnO photocatalyst was modified with different noble metals (Pt, Ag and Au) through photo deposition method and then characterized by different techniques (XRD, XRF, BET, UV-vis DRS, FESEM, and /CPS). The addition of noble metals produces important changes in the light absorption properties with a significant absorbance in the visible region due to the existence of surface plasmon resonance (SPR) observed at about 450 nm and 550 nm for ZnO modified with Ag and Au, respectively. The morphology of the samples was studied by TEM and the size ranges of the different metals were estimated. Noble metal nanoparticles were in every case heterogeneously deposited on the larger ZnO particles. All the prepared photocatalysts were tested in the photocatalytic removal of caffeine (toxic and persistent emerging compound) under UV and visible light irradiation. It was observed an enhancement of photocatalytic caffeine removal from aqueous solutions under UV light irradiation with the increase of metal content (from 0.5 to 1 wt %) for ZnO modified with Ag and Au (Ag/ZnO and Au/Zn0). In particular, Ag/ZnO and Au/ZnO with higher Ag and Au content (1 wt %) allowed to achieve the almost complete caffeine degradation after only 30 min and a TOC removal higher than 90% after 4 h of UV light irradiation. These two photocatalysts were investigated also under visible light irradiation and it was found that their photocatalytic performances were strongly enhanced in presence of visible light compared to unmodified ZnO. In particular, Ag/ZnO photocatalyst was able to reach the complete caffeine degradation and a TOC removal of about 70% after 4 h of visible light irradiation.