Journal of the American Chemical Society, Vol.140, No.47, 16094-16105, 2018
Oxygen-Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O-2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical
In reactions of significance to alternative energy schemes, metal catalysts are needed to overcome kinetically and thermodynamically difficult processes. Often, high-oxidation-state, high-energy metal oxo intermediates are proposed as mediators in elementary steps involving O-O bond cleavage and formation, but the mechanisms of these steps are difficult to study because of the fleeting nature of these species. Here we utilized a novel dianionic pentadentate ligand system that enabled a detailed mechanistic investigation of the protonation of a cobalt(III)-cobalt(III) peroxo dimer, a known intermediate in oxygen reduction catalysis to hydrogen peroxide. It was shown that double protonation occurs rapidly and leads to a low-energy O-O bond cleavage step that generates a Co(III) aquo complex and a highly reactive Co(IV) oxyl cation. The latter was probed computationally and experimentally implicated through chemical interception and isotope labeling experiments. In the absence of competing chemical reagents, it dimerizes and eliminates dioxygen in a step highly relevant to O-O bond formation in the oxygen evolution step in water oxidation. Thus, the study demonstrates both facile O-O bond cleavage and formation in the stoichiometric reduction of O-2 to H2O with 2 equiv of Co(II) and suggests a new pathway for selective reduction of O-2 to water via Co(III)-O-O-Co(III) peroxo intermediates.