화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.533, 569-577, 2019
Interface self-assembly preparation of multi-element doped carbon nanobowls with high electrocatalysis activity for oxygen reduction reaction
Developing an efficient, stable and low cost oxygen reduction reaction electrocatalyst is desirable for fuel cells and metal-air batteries. Here, we have successfully prepared multi-element doped carbon nanobowls by simply mixing the porous carbon nanobowls and sulfur doped graphitic carbon nitride quantum dots in FeCl3 solution and subsequent high temperature treatment processes. Compared with the commercial Pt/C electrocatalyst, the multi-element doped carbon nanobowls display a comparable half-wave potential of 0.82 V, much larger limiting diffusion current density (0.4-0.8 V), better methanol-tolerance and higher long-term stability for the oxygen reduction reaction in alkaline media. The robust three-dimensional porous structure of carbon nanobowls and multiple active centers derived from Fe, N, S and O co-doping are responsible for the excellent performance. This work suggests that such multi-element doped carbon nanobowls can be a promising alternative for Pt-based catalysts in fuel cells. (C) 2018 Elsevier Inc. All rights reserved.