화학공학소재연구정보센터
Electrochimica Acta, Vol.295, 39-49, 2019
Mineralization of paracetamol using a gas diffusion electrode modified with ceria high aspect ratio nanostructures
A large number of pharmaceutical drugs have been found in effluents because conventional treatments are not efficient in their removal. Among these drugs, paracetamol is a cause of concern due to its great use worldwide. In this context, electrochemical advanced oxidation processes (EAOPs) based on the Fenton process have been studied because they are able to remove these persistent organic pollutants. This work aims to use an electrocatalyst based on Vulcan XC-72 carbon black modified with 1% ceria high aspect ratio nanostructures (1% CeO2 HARN/Vulcan XC-72) as a gas diffusion electrode (GDE) for both hydrogen peroxide electrogeneration and paracetamol degradation using Fenton-like processes. These studies were evaluated using two different anodes, Pt and boron-doped diamond (BDD). The results obtained in the H2O2 electrogeneration indicated a large increase in the efficiency of the modified gas diffusion electrode (MGDE) with the 1% CeO2 HARN/Vulcan XC-72 electrocatalyst compared to the Vulcan XC-72 GDE without modification. Approximately 1463 mg L-1 of H2O2 with an energy consumption of 11.5 kWh kg(-1) and a current efficiency of 44.9% was obtained. The tested EAOPs showed paracetamol mineralization rates of up to 98.4% after 6 h of electrolysis in 350 mL of acidic medium. The MGDE also showed a high stability without loss of H2O2 electrogeneration capacity after 130 h of use, making it promising in applications for EAOPs aiming at organic pollutant mineralization. (C) 2018 Published by Elsevier Ltd.