화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.2, 153-163, February, 2019
Polymerization Kinetics and Physical Properties of Polyurethanes Synthesized by Bio-Based Monomers
E-mail:
The aim of this study was to examine the kinetics of polymerization and the properties of polyurethane (PU) synthesized from renewable sources named iPU using isosorbide (ISB), cPU using caster oil (CO), and hPU using the both. The synthesis was carried out via two-step polymerization by varying the contents of CO and ISB. The reaction rate, determined by FTIR, of the bio-based monomers was slower than that of the petroleum-based monomers. The activation energy was calculated from the reaction rate under different conditions. The physicochemical, morphological, and mechanical properties were examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), atomic force microscopy (AFM), and universal testing machine (UTM). The weight-average molecular weights (Mw) were in the range of 13,288 to 62,212 g·mol-1, glass transition temperature (Tg) of -30.9 to -33.3 °C, tensile strengths of 1.29 to 14.14 MPa, and elongation at breaks of 28 to 1,358%.
  1. Lee SH, Kim KI, Oh JS, Yun MJ, Kim SB, J. Korean Inst. Gas, 5, 66 (2012)
  2. Jung SG, Jeong JH, Kim SW, Kwon OP, Korean Soc. Clean Technol., 3, 238 (2011)
  3. Petrovic ZS, Polym. Rev., 1, 109 (2008)
  4. Liu D, Tian H, Zhang L, Chang PR, Ind. Eng. Chem. Res., 23, 9330 (2008)
  5. Yeganeh H, Hojati-Talemi P, Polym. Degrad. Stabil., 3, 480 (2007)
  6. Ock JW, Kim PK, Cho HS, Kwon OK, Jung WW, Koh JS, Text. Sci. Eng., 5, 320 (2015)
  7. Guo A, Javni I, Petrovic Z, J. Appl. Polym. Sci., 2, 467 (2000)
  8. Ogunniyi DS, Bioresour. Technol., 9, 1086 (2006)
  9. Meyer P, Techaphattana N, Manundawee S, Sangkeaw S, Junlakan W, Tongurai C, Thammasat Int. J. Sci. Tech., 13, 1 (2008)
  10. Monteavaro LL, da Silva EO, Costa APO, Samios D, Gerbase AE, Petzhold CL, J. Am. Oil Chem. Soc., 5, 365 (2005)
  11. Lubguban AA, Tu YC, Lozada ZR, Hseih FH, Suppes GJ, J. Appl. Polym. Sci., 1, 19 (2009)
  12. Campanella A, Bonnaillie LM, Wool RP, J. Appl. Polym. Sci., 4, 2567 (2009)
  13. Oh SY, Kang MS, Knowles JC, Gong MS, J. Biomater. Appl., 3, 327 (2015)
  14. Lee SM, Kim SK, Hong IK, Polym. Korea, 2, 287 (2015)
  15. Campanella A, Baltanas MA, Capel-Sanchez MC, Campos-Martin JM, Fierro JLG, Green Chem., 6, 330 (2004)
  16. Calvo-Correas T, Santamaria-Echart A, Saralegi A, Martin L, Valea A, Corcuera MA, Eceiza A, Eur. Polym. J., 70, 173 (2015)
  17. Maji PK, Bhowmick AK, J. Polym. Sci. Polym. Chem., 47, 731 (2009)
  18. Parnell S, Min K, Cakmak M, Polymer, 44(18), 5137 (2003)
  19. Cordeiro N, Belgacem MN, Gandini A, Neto CP, Ind. Crop. Prod., 6, 163 (1977)
  20. Lisardo N, Fraga F, Fraga L, Castro A, J. Appl. Polym. Sci., 5, 635 (1997)
  21. Kang X, Liu G, Curtis JM, Eur. Polym. J., 48, 2097 (2012)
  22. Alagi P, Choi YJ, Hong SC, Eur. Polym. J., 78, 46 (2016)
  23. Kim HJ, Kang MS, Knowles JC, Gong MS, J. Biomater. Appl., 3, 454 (2014)
  24. Ristic IS, Radusin T, Pilic B, Cakic S, Semendic JB, Polym. Eng. Sci., 7, 1374 (2012)
  25. Chavan NN, Adv. Mater. Sci. Appl., 2, 1520 (2011)
  26. Corcuera MA, Rueda L, d’Arlas BF, Arbelaiz A, Marieta C, Mondragon I, Eceiza A, Polym. Degrad. Stabil., 95, 2175 (2010)
  27. Meera KMS, Sankar RM, Paul J, Jaisankar SN, Mandal AB, Phys. Chem. Chem. Phys., 16, 9276.
  28. Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW, Polymer, 48(22), 6656 (2007)
  29. Abdolhosseini F, M., Givi KB, Am. J. Polym. Sci., 1, 18 (2016)
  30. Oprea S, J. Am. Oil Chem. Soc., 3, 313 (2010)
  31. Oprea S, Potolinca O, Oprea V, High Perform. Polym., 1, 49 (2011)