화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 234-241, March, 2019
Highly active bimetallic CuFe.N.C electrocatalysts for oxygen reduction reaction in alkaline media
E-mail:,
Here, we prepare a bimetallic CuFe-N-C catalyst for the oxygen reduction reaction (ORR) by annealing metal precursor-adsorbed polyaniline under an NH3 gas atmosphere at high temperature. The catalyst exhibits higher ORR activity and durability than Pt/C and other monometallic Cu (Fe)-N-C catalysts in 0.1 M KOH. The remarkable catalytic activity of the CuFe-N-C catalyst is due to the interaction between Cu and Fe, which facilitates ORR and also results in higher contents of total N and active N species. In the same vein, single cell using the CuFe-N-C catalyst exhibits greatly enhanced performance compared to those using other catalysts.
  1. Markovic N, Schmidt T, Stamenkovic V, Ross P, Fuel cells, 1, 105 (2001)
  2. Bing Y, Liu H, Zhang L, Ghosh D, Zhang J, Chem. Soc. Rev., 39, 2184 (2010)
  3. Zhang J, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer Science & Business Media, 2008.
  4. Veziroglu A, Macario R, Int. J. Hydrog. Energy, 36(1), 25 (2011)
  5. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
  6. Zhou Y, Neyerlin K, Olson TS, Pylypenko S, Bult J, Dinh HN, Gennett T, Shao Z, O’Hayre R, Energy Environ. Sci., 3, 1437 (2010)
  7. Fouda-Onana F, Bah S, Savadogo O, J. Electroanal. Chem., 636(1-2), 1 (2009)
  8. Sekol RC, Li XK, Cohen P, Doubek G, Carmo M, Taylor AD, Appl. Catal. B: Environ., 138, 285 (2013)
  9. Ahn M, Cha IY, Cho J, Ham HC, Sung YE, Yoo SJ, ACS Catal., 7, 5796 (2017)
  10. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K, Electrochim. Acta, 55(27), 8005 (2010)
  11. Gorlin Y, Jaramillo TF, J. Am. Chem. Soc., 132(39), 13612 (2010)
  12. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y, Nat. Chem., 3, 546 (2011)
  13. Stariha S, Artyushkova K, Workman MJ, Serov A, Mckinney S, Halevi B, Atanassov P, J. Power Sources, 326, 43 (2016)
  14. Zhang H, Osgood H, Xie X, Shao Y, Wu G, Nano Energy, 31, 331 (2017)
  15. Nagaiah TC, Bordoloi A, Sanchez MD, Muhler M, Schuhmann W, ChemSusChem, 5, 637 (2012)
  16. Sohn Y, Jung HJY, Kim P, Korean J. Chem. Eng., 34(8), 2162 (2017)
  17. Kim DH, Kwak DH, Han SB, Kim MC, Park HS, Park JY, Won JE, Ma KB, Park KW, J. Ind. Eng. Chem., 54, 200 (2017)
  18. Kang YS, Heo YH, Kim P, Yoo SJ, J. Ind. Eng. Chem., 52, 35 (2017)
  19. Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443 (2011)
  20. Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Nano Energy, 25, 110 (2016)
  21. Serov A, Artyushkova K, Atanassov P, Adv. Eng. Mater., 4 (2014)
  22. Lin L, Zhu Q, Xu AW, J. Am. Chem. Soc., 136(31), 11027 (2014)
  23. Zhu Y, Zhang B, Liu X, Wang DW, Su DS, J. Am. Chem. Soc., 53, 10673 (2014)
  24. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, Bai FQ, Zhang HX, Ma TY, Adv. Eng. Mater., 7 (2017)
  25. Deng J, Yu L, Deng D, Chen X, Yang F, Bao X, J. Mater. Chem. A, 1, 14868 (2013)
  26. Fu XG, Liu YR, Cao XP, Jin JT, Liu Q, Zhang JY, Appl. Catal. B: Environ., 130, 143 (2013)
  27. Li S, Zhang L, Kim J, Pan M, Shi Z, Zhang JJ, Electrochim. Acta, 55(24), 7346 (2010)
  28. He QG, Yang XF, Ren XM, Koel BE, Ramaswamy N, Mukerjee S, Kostecki R, J. Power Sources, 196(18), 7404 (2011)
  29. He QG, Yang XF, He RH, Bueno-Lopez A, Miller H, Ren XM, Yang WL, Koel BE, J. Power Sources, 213, 169 (2012)
  30. Fan W, Li Z, You C, Zong X, Tian X, Miao S, Shu T, Li C, Liao S, Nano Energy, 37, 187 (2017)
  31. Chen AL, Kong AG, Fan XH, Yang X, Li CL, Chen ZY, Shan YK, Int. J. Hydrog. Energy, 42(26), 16557 (2017)
  32. Bard AJ, Faulkner LR, Leddy J, Zoski CG, Electrochemical Methods:Fundamentals and Applications, Wiley New York, 1980.
  33. Herranz J, Lefevre M, Larouche N, Stansfield B, Dodelet JP, J. Phys. Chem. C, 111, 19033 (2007)
  34. Wen HC, Yang K, Ou KL, Wu WF, Chou CP, Luo RC, Chang YM, Surf. Coat. Technol., 200, 3166 (2006)
  35. Liu R, Wu D, Feng X, Mullen K, Angew. Chem.-Int. Edit., 122, 2619 (2010)
  36. Gojkovic SL, Gupta S, Savinell RF, Electrochim. Acta, 45(6), 889 (1999)
  37. Yang S, Feng X, Wang X, Mullen K, Angew. Chem.-Int. Edit., 50, 5339 (2011)
  38. Kim SJ, Nahm KS, Kim P, Catal. Lett., 142(10), 1244 (2012)
  39. Chen Z, Higgins D, Tao H, Hsu RS, Chen Z, J. Phys. Chem. C, 113, 21008 (2009)
  40. Ding W, Wei Z, Chen S, Qi X, Yang T, Hu J, Wang D, Wan LJ, Alvi SF, Li L, Angew. Chem.-Int. Edit., 125, 11971 (2013)
  41. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J, J. Mater. Chem., 21, 8038 (2011)
  42. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS, Energy Environ. Sci., 5, 7936 (2012)
  43. Wagner CD, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1979.
  44. Yoshida H, Nonoyama S, Yazawa Y, Hattori T, Phys. Scr., 2005, 813 (2005)
  45. Yoshida H, Yazawa Y, Hattori T, Catal. Today, 87(1-4), 19 (2003)
  46. Malheiro AR, Perez J, Villullas HM, J. Power Sources, 195(10), 3111 (2010)