화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.71, 50-64, March, 2019
A review of liquid droplet impacting onto solid spherical particles: A physical pathway to encapsulation mechanisms
E-mail:
Encapsulation has received a surge of interest in the biotechnological, chemical and pharmaceutical fields and other industrial processes, owing to numerous applications such as in fluidized catalytic cracking, antenna and wire fabrication, catalytic reactions, and process industries. For example, encapsulation is a technique used to entrap active agents within a carrier material and can be achieved through impact of droplets of encapsulating material on the solid particles of active agents. Considering the importance of dynamics of drop-particle collision, which directly affects the quality of film deposition during encapsulation, the current review is presented to investigate various aspects of drop impact on dry solid spherical surfaces, which is still lacking in the existing literature and aims at encouraging more researchers to study this topic. Also, this review covers frequent examples of droplet impingement onto curved surfaces, with a focus on the latest scientific findings in droplet impacting solid spherical surfaces.
  1. Grishaev V, Iorio CS, Dubois F, Amirfazli A, Atomization Sprays, 27(5) (2017)
  2. Kamali R, Khojasteh D, Mousavi SM, Newtonian and non-Newtonian droplet impact onto a heated hydrophobic solid surface, April 26.28, 2016.
  3. Khojasteh D, Manshadi MKD, Mousavi SM, Kamali R, Droplet impact on superhydrophobic surface under the influence of an electric field, 2016.
  4. Manshadi MKD, Khojasteh D, Mansoorifar A, Kamali R, Efciency enhancement of ICEK micromixer by a rectangular obstacle, 2016.
  5. Wang X, Naterer GF, Bibeau E, J. Thermophys. Heat Transfer, 21(3), 536 (2007)
  6. Kreder MJ, Alvarenga J, Kim P, Aizenberg J, Nat. Rev. Mater., 1(1), 15003 (2016)
  7. Mitra S, Sathe MJ, Doroodchi E, Utikar R, Shah MK, Pareek V, Joshi JB, Evans GM, Chem. Eng. Sci., 100, 105 (2013)
  8. Gupta A, Rao DS, Chem. Eng. Sci., 56(15), 4489 (2001)
  9. Ge Y, Fan LS, J. Fluid Mech., 573, 311 (2007)
  10. Breitenbach J, Roisman IV, Tropea C, Int. J. Heat Mass Transfer, 110, 34 (2017)
  11. Khojasteh D, Bordbar A, Kamali R, Marengo M, Int. J. Comput. Fluid Dyn., 31, 310 (2017)
  12. Lee M, Park W, Chung C, Lim J, Kwon S, Ahn KH, Lee SJ, Char K, Lab Chip, 10(9), 1160 (2010)
  13. Manshadi MKD, Khojasteh D, Mohammadi M, Kamali R, Int. J. Numer. Methods Electron. Netw. Devices Fields, 29(5), 845 (2016)
  14. Shabankareh IZ, Mousavi SM, Kamali R, J. Braz. Soc. Mech. Sci. Eng., 39(10), 4207 (2017)
  15. Taassob A, Manshadi MKD, Bordbar A, Kamali R, J. Braz. Soc. Mech. Sci. Eng., 39(6), 2013 (2017)
  16. Kundu A, Nigam KDP, Verma RP, AIChE J., 49(9), 2253 (2003)
  17. Malgarinos I, Nikolopoulos N, Gavaises M, Fuel Process. Technol., 156, 317 (2017)
  18. Onishi VC, Carrero-Parreno A, Reyes-Labarta JA, Ruiz-Femenia R, Salcedo-Diaz R, Fraga ES, Caballero JA, Desalination, 404, 230 (2017)
  19. Meiser I, Muller SC, Ehrhart F, Shirley SF, Zimmermann H, Microsyst. Technol., 21(1), 75 (2015)
  20. Moon BU, Abbasi N, Jones SG, Hwang DK, Tsai SS, Anal. Chem., 88(7), 3982 (2016)
  21. Wu L, Chen P, Dong Y, Feng X, Liu BF, Biomed. Microdevices, 15(3), 553 (2013)
  22. Zagnoni M, Cooper JM, Methods Cell Biol., 102, 25 (2011)
  23. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WT, Angew. Chem.-Int. Edit., 49(34), 5846 (2010)
  24. Yang CG, Xu ZR, Wang JH, TrAC Trends Anal. Chem., 29(2), 141 (2010)
  25. Khoufech A, Benali M, Saleh K, Powder Technol., 270, 599 (2015)
  26. Keshani S, Daud WRW, Nourouzi MM, Namvar F, Ghasemi M, J. Food Eng., 146, 152 (2015)
  27. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B, Procedia Food Sci., 1, 1806 (2011)
  28. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L, Compr. Rev. Food Sci. Food Saf., 15(1), 143 (2016)
  29. Oxley JD, Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation, pp.110 2012.
  30. Fang Z, Bhandari B, freeze drying and related processes for food ingredient and nutraceutical encapsulation, pp.73 2012.
  31. Breitenbach J, Eur. J. Pharm. Biopharm., 54(2), 117 (2002)
  32. A Guide to Injection Moulding, http://www.preview-project.eu/a-guide-to-injection-moulding/blog/.
  33. Kakran M, Antipina MN, Curr. Opin. Pharmacol., 18, 47 (2014)
  34. Dressler O, Solvas XCI, deMello AJ, Annu. Rev. Anal. Chem., 10, 1 (2017)
  35. Zuidam NJ, Shimoni E, Overview of microencapsulates for use in food products or processes and methods to make them, pp.3 2010.
  36. Bolleddula DA, Berchielli A, Aliseda A, Adv. Colloid Interface Sci., 159(2), 144 (2010)
  37. Bakshi S, Roisman IV, Tropea C, Phys. Fluids, 19(3), 032102 (2007)
  38. Josserand C, Thoroddsen ST, Annu. Rev. Fluid Mech., 48, 365 (2016)
  39. Liang G, Mudawar I, Int. J. Heat Mass Transfer, 101, 577 (2016)
  40. Marengo M, Antonini C, Roisman IV, Tropea C, Curr. Opin. Colloid Interface Sci., 16(4), 292 (2011)
  41. Eral HB, Manukyan G, Oh JM, Langmuir, 27(9), 5340 (2011)
  42. Khojasteh D, Kazerooni M, Salarian S, Kamali R, J. Ind. Eng. Chem., 42, 1 (2016)
  43. Khojasteh D, Mousavi SM, Kamali R, Indian J. Phys., 91(5), 513 (2017)
  44. Mitra S, Doroodchi E, Pareek V, Joshi JB, Evans GM, Adv. Powder Technol., 26(1), 280 (2015)
  45. Liu D, He Q, Evans GM, Adv. Powder Technol., 21(4), 401 (2010)
  46. Dubrovsky VV, Podvysotsky AM, Shraiber AA, Int. J. Multiphase Flow, 18(3), 337 (1992)
  47. Liang G, Mu X, Guo Y, Shen S, Int. J. Heat Mass Transfer, 98, 455 (2016)
  48. Liang G, Guo Y, Yang Y, Guo S, Shen S, Exp. Therm. Fluid Sci., 51, 18 (2013)
  49. Liang G, Guo Y, Mu X, Shen S, Exp. Therm. Fluid Sci., 55, 150 (2014)
  50. Rozhkov A, Prunet-Foch B, Vignes-Adler M, Phys. Fluids, 14(10), 3485 (2002)
  51. Yoon SS, Kim HY, Lee D, Kim N, Jepsen RA, James SC, Drying Technol., 27(2), 258 (2009)
  52. Juarez G, Gastopoulos T, Zhang Y, Siegel ML, Arratia PE, Phys. Rev. E, 85(2), 026319 (2012)
  53. Liu Y, Andrew M, Li J, Yeomans JM, Wang Z, Nat. Commun., 6 (2015)
  54. Sechenyh V, Amirfazli A, J. Fluids Struct., 66, 282 (2016)
  55. Charalampous G, Hardalupas Y, Phys. Fluids, 29(10), 103305 (2017)
  56. Banitabaei SA, Amirfazli A, Phys. Fluids, 29(6), 062111 (2017)
  57. Mitra S, Evans GM, Doroodchi E, Pareek V, Joshi JB, Chem. Eng. Sci., 170, 154 (2017)
  58. Chen S, Bertola V, Phys. Fluids, 29(8), 082106 (2017)
  59. Jadidbonab H, Mitroglou N, Karathanassis I, Gavaises M, Langmuir, 34(1), 36 (2017)
  60. Pasandideh-Fard M, Bussmann M, Chandra S, Atomization Sprays, 11(4) (2001)
  61. Yan-Peng L, Huan-Ran W, Can. J. Chem. Eng., 89(1), 83 (2011)
  62. Gac JM, Gradon L, Colloid Surf. A: Physicochem. Eng. Asp., 441, 831 (2014)
  63. Zhang D, Papadikis K, Gu S, Commun. Comput. Phys., 16(4), 892 (2014)
  64. Gumulya M, Utikar RP, Pareek V, Mead-Hunter R, Mitra S, Evans GM, Chem. Eng. J., 278, 309 (2015)
  65. Malgarinos I, Nikolopoulos N, Gavaises M, Int. J. Heat Fluid Flow, 61, 499 (2016)
  66. Liu X, Zhao Y, Chen S, Shen S, Zhao X, Phys. Fluids, 29(6), 062105 (2017)
  67. Bordbar A, Taassob A, Khojasteh D, Marengo M, Kamali R, Langmuir, 34(17), 5149 (2018)
  68. Levin Z, Hobbs PV, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 269, 555 (1971)
  69. Hardalupas Y, Taylor AMKP, Wilkins JH, Int. J. Heat Fluid Flow, 20(5), 477 (1999)
  70. Zhu Y, Liu HR, Mu K, Gao P, Ding H, Lu XY, J. Fluid Mech., 824 (2017)
  71. Guo C, Sun J, Sun Y, Wang M, Zhao D, Appl. Phys. Lett., 112(26), 263702 (2018)
  72. Akao F, Trans. Int. Steel Inst. Japan, 20, 737 (1980)
  73. Scheller BL, Bousfield DW, AIChE J., 41(6), 1357 (1995)
  74. Clanet C, Beguin C, Richard D, Quere D, J. Fluid Mech., 517, 199 (2004)
  75. Roisman IV, Phys. Fluids, 21(5), 052104 (2009)
  76. Liang G, Mudawar I, Int. J. Heat Mass Transfer, 106, 103 (2017)
  77. Liang G, Mudawar I, Int. J. Heat Mass Transfer, 115, 1174 (2017)
  78. Mitra S, Nguyen TBT, Doroodchi E, Pareek V, Joshi JB, Evans GM, Chem. Eng. Sci., 149, 181 (2016)