화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 68-73, February, 2019
졸-겔 공정으로 제조한 나노 실리카의 표면개질 및 가스차단성 필름으로의 응용
Surface Modification of Nano Silica Prepared by Sol-gel Process and Subsequent Application towards Gas-barrier Films
E-mail:
초록
실리카 표면의 개질을 위하여 다양한 조건 하에서 tetraethyl orthosilicate (TEOS)로부터 졸-겔 공법으로 제조한 실리카졸에 실란 커플링제인 octyltrimethoxysilane (OTMS) 또는 hexadecyltrimethoxysilane (HDTMS)을 반응시켰다. 얻어진 반응물들의 SEM-EDS, 열분석 및 원소분석을 통하여 실리카의 표면이 유기물로 개질된 것을 확인할 수 있었다. 유기용매에서의 분산성 및 에폭시 수지와 복합화한 필름의 표면 조도 등을 평가한 결과, 에탄올을 용매로 사용하여 50 ℃에서 TEOS를 24 h 가수분해하고, OTMS를 2 h 반응시킨 물질이 최적으로 나타났다. 이와 같은 표면 개질 실리카를 포함하는 복합체 필름의 산소 투과도를 측정한 결과, 개질 실리카를 포함하지 않는 필름에 비하여 산소 투과도가 12%저하된 것을 확인할 수 있었다.
We prepared hydrophobic silica particles by a sol-gel process from tetraethyl orthosilicate (TEOS), followed by coupling the reaction with octyltrimethoxysilane (OTMS) or hexadecyltrimethoxysilane (HDTMS) under various reaction conditions. We confirmed the extent of silica surface modification with organic compounds by SEM-EDS, thermogravimetry and elemental analysis. The silica particles obtained after the hydrolysis reaction of TEOS in ethanol at 50 ℃ for 24 h and the coupling reaction with OTMS for 2 h at the same temperature displayed the optimum performance in terms of the dispersity in an organic solvent and the surface roughness of films composited with epoxy resins. The oxygen permeability of the composite film with modified-silica was 12% lower than that of using the film without modified-silica.
  1. Guo L, Yuan W, Lu Z, Li CM, Colloids Surf. A: Physicochem. Eng. Asp., 439, 69 (2013)
  2. Schneider J, Akbar MI, Dutroncy J, Kiesler D, Leins M, Schulz A, Walker M, Schumacher U, Stroth U, Plasma Process. Polym, 6, 700 (2009)
  3. Moritoki M, Mori T, Shirakura A, Suzuki T, Surf. Coat. Technol., 307, 1070 (2016)
  4. Singh B, Bouchet J, Rochat G, Leterrier Y, Manson J, Fayet P, Surf. Coat. Technol., 201, 7107 (2007)
  5. Singh B, Bouchet J, Leterrier Y, Manson J, Rochat G, Fayet P, Surf. Coat. Technol., 202, 208 (2007)
  6. Lange J, Wyser Y, Packag. Technol. Sci., 16, 149 (2003)
  7. Nikje MMA, Khanmohammadi MR, Garmarudi AB, Haghshenas M, Curr. Chem. Lett., 1, 13 (2012)
  8. Vladimirov V, Betchev C, Vassiliou A, Papageorgiou G, Bikiaris D, Compos. Sci. Technol., 66, 2935 (2006)
  9. Bikiaris DN, Vassiliou A, Pavlidou E, Karayannidis GP, Eur. Polym. J., 41, 1965 (2005)
  10. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)
  11. Yang KM, Chang MJ, Nam KH, Chung DW, Appl. Chem. Eng., 28(5), 554 (2017)
  12. Graham T, J. Chem. Soc., 17, 318 (1864)
  13. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S, Adv. Colloid Interface Sci., 214, 17 (2014)
  14. Chang H, Tu K, Wang X, Liu J, RSC Adv., 5, 30647 (2015)
  15. Rahman IA, Padavettan V, J. Nanomater., 2012, 1 (2012)
  16. Wang X, Chai Y, Liu J, Holzforschung, 67, 667 (2013)
  17. Alipour N, Gedde UW, Hedenqvist MS, Yu S, Roth S, Bruning K, Vieyres A, Schneider K, Eur. Polym. J., 64, 36 (2015)
  18. Dutta D, Chatterjee S, Pillai KT, Pujari PK, Ganguly BN, Chem. Phys., 312, 319 (2005)
  19. Petcu C, Purcar V, Spataru CI, Alexandrescu E, Somoghi R, et al., J. Nanomater., 7, 47 (2017)
  20. Joo J, Kim HS, Kim JT, Yoo HJ, Lee JR, Cheong IW, Korean Chem. Eng. Res., 50(2), 371 (2012)
  21. Eliades T, Gioka C, Eliades G, Makou M, Eur. J. Orthod., 26, 333 (2004)
  22. Ha TY, Chang JH, Polymer, 39, 705 (2015)