화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.1, 43-48, February, 2019
매체순환연소공정용 CaSnO3 산소전달입자의 산화.환원 특성 연구
A Study on Redox Properties of CaSnO3 Oxygen Carrier for Chemical Looping Combustion Process
E-mail:
초록
본 연구는 매체순환연소공정용 산소전달입자로서 CaSnO3 입자의 타당성을 조사하기 위해 수행하였다. CaSnO3은 페롭스카이트 구조를 가지고, 반복되는 환원-산화 반응 후에도 구조적안정성을 보였다. 산소전달량은 환원 반응 시 결정 구조 변화를 통해 계산된 이론 수치와 거의 동일한 15.4 wt%를 가졌다. 10번의 환원과 산화 반응 후에, 산소전달량과 산소전달속도는 작동 온도에서 일정하게 유지되었다. 결론적으로, CaSnO3 입자는 CLC의 산소 운반체로서 좋은 대체 물질이 될 수 있다고 판단하였다.
This study investigated the feasibility of CaSnO3 particles as an oxygen carrier in chemical looping combustion (CLC). CaSnO3 particles had a perovskite crystal structure and showed the structural stability after repeated reduction-oxidation reactions. The oxygen transfer capacity was 15.4 wt% almost the same as the calculated theoretical value from the crystal structure transformation during reduction. After 10th cycles of reduction and oxidation, the oxygen transfer capacity and rate were still maintained constantly at an operating temperature. In conclusion, CaSnO3 particles could be a good alternative material as an oxygen carrier in CLC.
  1. Hwang JH, Son EN, Lee R, Kim SH, Baek JI, Ryu HJ, Lee KT, Sohn JM, Catal. Today, 303, 13 (2018)
  2. Tan YT, Nookuea W, Li HL, Thorin E, Yan JY, Energy Conv. Manag., 118, 204 (2016)
  3. Theo WL, Lim JS, Hashim H, Mustaffa AA, Ho WS, Appl. Energy, 183, 1633 (2016)
  4. Hossain MM, de Lasa HI, Chem. Eng. Sci., 63(18), 4433 (2008)
  5. Niu X, Shen LH, Gu HM, Song T, Xiao J, Chem. Eng. J., 260, 631 (2015)
  6. Di ZC, Cao Y, Yang FL, Cheng FQ, Zhang K, Fuel, 226, 618 (2018)
  7. Liu YZ, Jia WH, Guo QJ, Ryu HJ, Chin. J. Chem. Eng., 22(11-12), 1208 (2014)
  8. Cho P, Mattisson T, Lyngfelt A, Fuel, 83(9), 1215 (2004)
  9. de Diego LF, Garcia-Labiano F, Adanez J, Gayan P, Abad A, Corbella BM, Palacios JM, Fuel, 83(13), 1749 (2004)
  10. Mendiara T, Abad A, de Diego LF, Garcia-Labiano F, Gayan P, Adanez J, Int. J. Greenhouse Gas Control, 19, 322 (2013)
  11. Tilland A., Prieto J., Petitjean D., Schaer E., Chem. Eng. J., 302, 619 (2016)
  12. Ryu HJ, Park YC, Lee SY, Shun D, Baek JI, Energy Procedia., 114, 407 (2017)
  13. Abad A, Adanez J, Garcia-Labiano F, de Diego LF, Gayan P, Celaya J, Chem. Eng. Sci., 62(1-2), 533 (2007)
  14. Mattisson T, Jardnas A, Lyngfelt A, Energy Fuels, 17(3), 643 (2003)
  15. Hallberg P, Ryden M, Mattisson T, Lyngfelt A, Energy Procedia., 63, 80 (2014)
  16. Abad A, Garcia-Labiano F, Gayan P, de Diego LF, Adanez J, Chem. Eng. J., 269, 67 (2015)
  17. Sasikala R, Gupta NM, Kulshreshtha SK, Catal. Lett., 71, 1 (2001)
  18. Valderrama G, Goldwasser MR, de Navarro CU, Tatibouet JM, Barrault J, Batiot-Dupeyrat C, Martinez F, Catal. Today, 107-108, 785 (2005)
  19. Zhao K, He F, Huang Z, Zheng AQ, Li HB, Zhao ZL, Int. J. Hydrog. Energy, 39(7), 3243 (2014)
  20. Chen YG, Galinsky N, Wang ZR, Li FX, Fuel, 134, 521 (2014)
  21. Fang H, Kun Z, Huang Z, Li X, Wei G, Li H, Chin. J. Catal., 34, 1242 (2013)
  22. Imanieh MH, Rad MH, Nadarajah A, Gonzalez-Platas J, Rivera-Lopez F, Martin IR, J. CO2 Util., 13, 95 (2016)
  23. Dai XP, Li J, Fan JT, Wei WS, Xu J, Eng. Chem. Res., 51, 11072 (2012)
  24. Mihai O, Chen D, Holmen A, J. Catal., 293, 175 (2012)
  25. Kocemba I, Dlugolecka J, Wrobel-Jedrzejewska M, Gogowski J, Dobrosz-Gomez I, Rynkowski J, React. Kinet. Mech. Cat., 123, 659 (2018)
  26. Hwang JH, A Study of Co Containing Perovskite Oxides as Oxygen Carrier For Chemical Looping Combustion, Master Dissertation, Chonbuk National University, Jeonju, Korea (2017).