화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.70, 169-177, February, 2019
Improvement of corrosion resistance for low carbon steel pipeline in district heating environment using transient oxygen injection method
E-mail:
Increase of corrosion resistance after the injection of oxygen was clearly observed in the electrochemical tests. Fe2O3 caused by additional oxidation of Fe3O4 during the injection of oxygen filled the space of the original Fe3O4, and it decreased the porosity of the oxide layer. It indicates that this transient oxygen injection method can improve the corrosion resistance in a carbon steel pipeline of a district heating system covered by an Fe3O4 oxide layer. Thus, this method would be promising eco-friendly treatment for operating district heating system because it does not need the artificial chemicals and suitable for longtime used system.
  1. Marcus P, Maurice V, Strenhblow HH, Corrosion Sci., 50, 2698 (2008)
  2. Soltis J, Corrosion Sci., 90, 5 (2015)
  3. Hwang DY, Kim YM, Park DY, Yoo B, Shin DH, Electrochim. Acta, 54(23), 5479 (2009)
  4. Shih CC, Shih CM, Su YY, Su LHJ, Chang MS, Lin SJ, Corrosion Sci., 46, 427 (2004)
  5. Morcillo M, Chico B, Diaz I, Cano H, de la Fuente D, Corrosion Sci., 77, 6 (2013)
  6. Kim YS, Kim JG, Metals, 7, 182 (2017)
  7. Tamura H, Corrosion Sci., 50, 1872 (2008)
  8. Wojdyga K, Energy Build., 40(11), 2009 (2008)
  9. Ghafghazi S, Sowlati T, Sokhansanj S, Melin S, Appl. Energy, 87(4), 1134 (2010)
  10. Difs K, Danestig M, Trygg L, Appl. Energy, 86(11), 2327 (2009)
  11. Kim YS, Kim JG, Eng. Fail. Anal., 83, 193 (2018)
  12. Dhua SK, Eng. Fail. Anal., 17, 1572 (2010)
  13. Duarte CA, Espejo E, Martinez JC, Eng. Fail. Anal., 79, 704 (2017)
  14. Galliano F, Landolt D, Prog. Org. Coat., 44, 217 (2002)
  15. Golabadi M, Aliofkhazraei M, Toorani M, Rouhaghdam AS, J. Ind. Eng. Chem., 47, 154 (2017)
  16. Lin B, Lu J, Kong G, Surf. Coat. Technol., 202, 1831 (2008)
  17. Kim JG, Kim YW, Corrosion Sci., 43, 2011 (2001)
  18. El-Etre AY, Abdallah M, Corrosion Sci., 42, 731 (2000)
  19. Alvarez PE, Fiori-Bimbi MV, Neske A, Brandan SA, Gervasi CA, J. Ind. Eng. Chem., 47, 92 (2018)
  20. Dohare P, Ansari KR, Quraishi MA, Obot IB, J. Ind. Eng. Chem., 52, 197 (2017)
  21. Kohara M, Kawamura T, Egami M, Tribol. Trans., 49, 53 (2006)
  22. Jones DA, Principle and Prevention of Corrosion, 2nd ed., Prentice Hall, New Jersey, pp. 50 1996.
  23. Bloom MC, Goldenberg L, Corrosion Sci., 5, 623 (1965)
  24. Lee DY, Kim WC, Kim JC, Corrosion Sci., 64, 105 (2012)
  25. Dooley RB, Chexal VK, Int. J. Press. Vessels Pip., 77, 85 (2000)
  26. Kain V, Rocychowdhury S, Ahmedabadi P, Barua DK, Eng. Fail. Anal., 18, 2028 (2011)
  27. Fuijwara K, Domae M, Yoneda K, Inada F, Ohira T, Hisamune K, Nucl. Eng. Des., 241, 4482 (2011)
  28. Yamagishi M, Miyajima M, Evaluation of oxygenated water treatment, 14th International Conference on the Properties of Water and Steam in Kyoto, Japan, 461 (2004).
  29. Pavageau EM, Effect of Hydrazine on Flow Accelerated Corrosion, EPRI-1008208 (2005).
  30. Dooley B, Shields K, Cycle Chemistry for Conventional Fossil Plants and Combined Cycles/HRSGs, EPRI2004, PPChom (2004).
  31. Kim YS, Lee SK, Chung HJ, Kim JG, Ocean Eng., 148, 223 (2018)
  32. Stansbury EE, Buchanan RA, Fundamental of Electrochemical Corrosion, ASM International, Ohio, USA, 2000.
  33. Kim KH, Lee SH, Nam ND, Kim JG, Corrosion Sci., 53, 3576 (2011)
  34. Mansfeld F, Corrosion, 36, 301 (1981)
  35. Tang F, Bao Y, Chen Y, Tang Y, Chen G, Constr. Build. Mater., 112, 7 (2016)
  36. Masfeld F, Kending MW, Tsai T, Corrosion, 38, 570 (1982)
  37. Benedetti AV, Sumodjo PT, Nobe K, Cabot PL, Proud WG, Electrochim. Acta, 40(16), 2657 (1995)
  38. Bataillon C, Brunet S, Electrochim. Acta, 39(3), 455 (1994)
  39. Li X, Deng S, Fu H, Corrosion Sci., 53, 664 (2011)
  40. Jiang D, Xu H, Deng B, Li M, Xiao Z, Zhang N, Appl. Therm. Eng., 93, 1248 (2016)