화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 663-669, December, 2018
밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화
Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method
E-mail:
초록
초음파 추출공정을 이용하여 밀싹으로부터 유효성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 플라보노이드성분 함량을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 초음파 조사세기에 따른 주효과도와 교호효과도를 해석하였다. 추출수율의 경우 주정/초순수의 부피비와 초음파 조사세기가 상대적으로 큰 영향을 미쳤으며, 플라보노이드성분 함량의 경우에는 추출시간의 영향이 가장 크게 나타났다. 추출수율과 플라보노이드성분 함량을 모두 고려한 결과 최적조건은 추출시간(17.00 min), 주정/초순수의 부피비(50.25 vol%), 초음파 조사세기(551.70 W)이며, 이때 예측 추출수율은 28.43 wt%, 예측 플라보노이드성분 함량은 29.99 μg QE/mL dw을 얻을 수 있었다. 실험을 통해 유효성분 추출수율(28.73 wt%), 플라보노이드성분 함량(29.65μg QE/mL dw)의 실험값을 얻을 수 있었으며, 이를 예측값과 비교했을 때 오차율은 각각 1.05, 1.13%이다.
The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and 29.99 μg QE/mL dw, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and 29.65 μg QE/mL dw, respectively with respective error rates of 1.05 and 1.13%.
  1. Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
  2. Clifford AH, Cuppett SL, J. Sci. Food Agric., 80, 1063 (2000)
  3. Tudek B, Peryt B, Miloszewska J, Szymczyk T, Przybyszewska M, Janik P, Neoplasma, 35(5), 515 (1998)
  4. Aydos OS, Avcl A, Ozkan T, Karadag A, Gurleyik E, Altinok E, Sunguroglu A, Turk. J. Med. Sci., 41(4), 657 (2011)
  5. Falcioni G, Fedeli D, Tiano L, Calzuola I, Mancinelli L, Marsili V, Gianfranceschi G, J. Food Sci., 67(8), 2918 (2002)
  6. Yavari S, Malakahmad A, Sapari NB, Yavari S, Process Saf. Environ. Protect., 109, 509 (2017)
  7. D’Archivio AA, Maggi MA, Food Chem., 219, 414 (2017)
  8. Danmaliki DI, Saleh TA, Shamsuddeen AA, J. Ind. Eng. Chem., 313, 993 (2017)
  9. Jeong HS, Joo H, Lee JH, Appl. Chem. Eng., 24(5), 525 (2013)
  10. Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
  11. Beck S, Stengel J, Phytochemistry, 130, 201 (2016)
  12. Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V, Food Chem., 207, 115 (2016)
  13. Yanga RF, Genga LL, Lub HQ, Fanc XD, Ultrason. Sonochem., 34, 571 (2017)
  14. Park SA, Ha JH, Park SN, Appl. Chem. Eng., 24(2), 177 (2013)
  15. Blois MS, Nature, 181, 1199 (1958)