화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.1, 146-156, January, 2019
Study of effective parameters for the polarization characterization of PEMFCs sensitivity analysis and numerical simulation
E-mail:
A three-dimensional model of a HT-PEMFC was simulated using Comsol Multiphysics software. Sensitivity was analyzed by using the three-level Box-Behnken experimental design. The effect of independent variables on the fuel cell performance including air and hydrogen velocity, temperature and amount of phosphoric acid doping level (PAdop) on the membrane was investigated. The results showed that the PAdop is the most important variable. The simulation results showed that with the increasing of the PAdop from 2 to 16, the current density (at a voltage of 0.4 V) increased from 0.3 to 0.9A/cm2, which confirms the importance of the PAdop factor on the fuel cell performance.
  1. Devrim Y, Erkan S, Bac N, Eroglu I, Int. J. Hydrog. Energy, 34(8), 3467 (2009)
  2. Li Q, He R, Jensen JO, Bjerrum NJ, Chem. Mater., 15, 4896 (2003)
  3. Cheddie D, Munroe N, J. Power Sources, 156(2), 414 (2006)
  4. Qi ZG, He CZ, Kaufman A, J. Power Sources, 111(2), 239 (2002)
  5. Kongstein OE, Berning T, Borresen B, Seland F, Tunold R, Energy, 32(4), 418 (2007)
  6. Weng D, Wainright JS, Landau U, Savinell RF, J. Electrochem. Soc., 143(4), 1260 (1996)
  7. Ergun D, Devrim Y, Bac N, Eroglu I, J. Appl. Polym. Sci., 124 (2012).
  8. Gant SE, Kelsey A, McNally K, Witlox HWM, Bilio M, J. Loss Prev. Process Ind., 26(4), 792 (2013)
  9. Haghayegh M, Eikani MH, Rowshanzamir S, Int. J. Hydrog. Energy, 42(34), 21944 (2017)
  10. Sohn YJ, Yim SD, Park GG, Kim M, Cha SW, Kim K, Int. J. Hydrog. Energy, 42(18), 13226 (2017)
  11. Lakshmi RB, Harikrishnan NP, Juliet AV, Appl. Surf. Sci., 418, 99 (2017)
  12. Li S, Sunden B, Int. J. Hydrog. Energy, 42(44), 27323 (2017)
  13. Bradfield R, Cairns G, Wright G, Technological Forecasting and Social Change, 100, 44 (2015).
  14. Wang SJ, Lee SY, Computational Statistics & Data Analysis, 23, 239 (1996).
  15. Hadzima-Nyarko M, Nyarko EK, Moric D, Expert Systems with Applications, 38, 13405 (2011).
  16. Zio E, Pedroni N, Carlo M, Reliability Engineering & System Safety, 107, 90 (2012).
  17. Mousavi J, Parvini M, Int. J. Hydrog. Energy, 41(9), 5188 (2016)
  18. Chippar P, Ju H, Solid State Ion., 225, 30 (2012)
  19. Lobato J, Canizares P, Rodrigo MA, Pinar FJ, Mena E, Ubeda D, Int. J. Hydrog. Energy, 35(11), 5510 (2010)
  20. O'hayre R, Cha SW, Prinz FB, Colella W, Fuel cell fundamentals, Wiley (2016).
  21. Springer TE, Gottesfeld S, Pseudo homogeneous catalyst layer model for polymer electrolyte fuel cell, Los Alamos National Lab., NM (United States) (1991).
  22. Song DT, Wang QP, Liu ZS, Navessin T, Holdcroft S, Electrochim. Acta, 50(2-3), 731 (2004)
  23. Bernardi DM, Verbrugge MW, J. Electrochem. Soc., 139, 2477 (1992)
  24. Cheddie DF, Munroe NDH, Int. J. Hydrog. Energy, 32(7), 832 (2007)
  25. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM, J. Qual. Technol., 36, 53 (2004)
  26. Khajeh M, J. Supercrit. Fluids, 55(3), 944 (2011)
  27. Kanaris A, Mouza A, Paras S, Int. J. Therm. Sci., 48, 1184 (2009)
  28. Carton JG, Olabi AG, Energy, 35(7), 2796 (2010)
  29. Kim HM, Kim KY, Int. J. Heat Mass Transf., 47(23), 5159 (2004)
  30. Sezgin B, Caglayan DG, Devrim Y, Steenberg T, Eroglu I, Int. J. Hydrog. Energy, 41(23), 10001 (2016)
  31. Altan M, Mater. Des., 31, 599 (2010)
  32. Yetilmezsoy K, Demirel S, Vanderbei RJ, J. Hazard. Mater., 171(1-3), 551 (2009)
  33. Liu HL, Lan YW, Cheng YC, Process Biochem., 39(12), 1953 (2004)
  34. Adinarayana K, Ellaiah P, J. Pharm. Pharm. Sci., 5, 272 (2002)
  35. Wu DF, Zhou JC, Li YD, Chem. Eng. Sci., 64(2), 198 (2009)