화학공학소재연구정보센터
Protein Expression and Purification, Vol.151, 9-17, 2018
Expression, purification and characterization of the full-length SmpB protein from Mycobacterium tuberculosis
The trans-translation system is recognized as an excellent target for developing new drugs to rapidly sterilize Mycobacterium tuberculosis (TB) infection and significantly shorten TB treatment duration. As a vital component of the trans-translation system for rescuing stalled ribosomes, the SmpB protein from Mycobacterium tuberculosis (MtbSmpB, 1-160 a. a.) mediates tmRNA binding to stalled ribosomes through forming a complex with tmRNA. So far, few works have been conducted to prepare, characterize biophysical properties and determine three-dimensional structure for the full-length MtbSmpB protein. In the present work, we successfully expressed and purified the His-tagged full-length MtbSmpB protein in Escherichia coli with a yield of 26.9 mg from 1 L of Luria Bertani medium. We also obtained MtbSmpB with a yield of 18.5 mg from 1 L of M9 minimal medium. The MtbSmpB protein showed a single band in SDS-PAGE with a molecular weight of similar to 20 kDa consistent with the measurement from MALDI-TOF-mass spectrometry. The dynamic light scattering experiment indicated that MtbSmpB existed in a monomeric form. Moreover, both circular dichroism and nuclear magnetic resonance (NMR) experiments exhibited that MtbSmpB was well structured, suggesting that it could be feasible to determine its solution structure by NMR spectroscopy. NMR titration experiments showed that MtbSmpB specifically bound to tmRNA. This work lays the essential basis for further determining the solution structure and dynamics of the full-length MtbSmpB protein.